Please wait a minute...
材料导报  2025, Vol. 39 Issue (3): 23110159-6    https://doi.org/10.11896/cldb.23110159
  无机非金属及其复合材料 |
大跨度伪装遮障材料技术研究进展
杨鸿睿1,†, 刘洪蕊2,†,*, 王结良2, 祖梅1,*, 徐遨蓝2
1 国防科技大学空天科学学院,长沙 410073
2 32182部队,北京 100042
Research Progress on Large-span Camouflage Screen Materials and Technologies
YANG Hongrui1,†, LIU Hongrui2,†,* , WANG Jieliang2, ZU Mei1,*, XU Aolan2
1 College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
2 Unit 32182 of People's Liberation Army, Beijing 100042, China
下载:  全 文 ( PDF ) ( 14522KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 伪装遮障通常利用制式器材或就便材料对军事工程、装备进行遮蔽,以应对可见、红外和雷达探测,对军事目标形成有效保护。现代作战背景下,许多军事工程及装备体积大,跨度大,对伪装器材使用要求高,传统伪装遮障技术已难以满足此类军事工程及装备的伪装需求。因此,研究及开发大跨度、轻量化、展撤迅速的伪装遮障技术和器材引起广泛关注。本文介绍了伪装遮障的基本原理,分别讨论了大跨度伪装遮障的支撑结构和遮障面的研究现状,并展望了大跨度伪装遮障的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨鸿睿
刘洪蕊
王结良
祖梅
徐遨蓝
关键词:  大跨度  伪装遮障  支撑结构  遮障面    
Abstract: Camouflage screen usually employs manufactured equipment or on-site materials to hide military engineering and equipment to cope with visible, infrared, and radar detections. Under the background of modern warfare, many military engineering and equipment are large in size and span, and pose high requirements for the use of camouflage equipment. Conventional camouflage screen technology has become inadequate to meet the camouflage requirements of these military engineering and equipment. Thus camouflage screen materials with large span, lightweight, and rapid deployment and removal and the corresponding technologies have attracted widespread attention. This paper outlines the basic principles of camouflage screen, discusses the research status of supporting structure and camouflage screen surface for large-span camouflage, respectively, and offers a brief prospect on the development trend of large-span camouflage screen.
Key words:  large span    camouflage screen    supporting structure    camouflage screen surface
出版日期:  2025-02-10      发布日期:  2025-02-05
ZTFLH:  TB383  
通讯作者:  *刘洪蕊,32182部队工程师。2021年获北京师范大学工学博士学位,目前主要从事功能材料研究、伪装设计、场地修复等工作。 remain7@163.com; 祖梅,国防科技大学副研究员,硕士研究生导师。2013年获同济大学材料学博士学位。主要从事信息功能材料及其应用研究。zumei2003@163.com   
作者简介:  杨鸿睿,国防科技大学空天科学学院硕士研究生,在祖梅副研究员的指导下进行研究。目前主要研究领域为伪装隐身材料。† 共同第一作者
引用本文:    
杨鸿睿, 刘洪蕊, 王结良, 祖梅, 徐遨蓝. 大跨度伪装遮障材料技术研究进展[J]. 材料导报, 2025, 39(3): 23110159-6.
YANG Hongrui, LIU Hongrui , WANG Jieliang, ZU Mei, XU Aolan. Research Progress on Large-span Camouflage Screen Materials and Technologies. Materials Reports, 2025, 39(3): 23110159-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23110159  或          http://www.mater-rep.com/CN/Y2025/V39/I3/23110159
1 Wang J. Science & Technology Information, 2023, 21(12), 141 (in Chinese).
王军. 科技资讯, 2023, 21(12), 141.
2 Geng N. Accounts of Materials Research, 2013, 644, 353.
3 Li J M, Jia S Z, Li R X. Building Structure, 2023, 53(1), 1 (in Chinese).
李亚明, 贾水钟, 李瑞雄. 建筑结构, 2023, 53(1), 1.
4 Geng L. Engineering Construction, 2017, 49(11), 32 (in Chinese).
耿磊. 工程建设, 2017, 49(11), 32.
5 Chen Y. Journal of Guangdong Open University, 2002(2), 79 (in Chinese).
陈颖. 广东广播电视大学学报, 2002(2), 79.
6 李剑飞, 甘伟鹏, 龙跃, 等. 中国专利, CN209891746U, 2020.
7 Liu X, Zhang Y, Zhang A, et al. Advances in Structural Engineering, 2017, 20(4), 504.
8 Veenendaal D, Block P. Engineering Structures, 2014, 75, 39.
9 Deng A Z, He W M, Yang Y, et al. National Defense Technology, 2019, 40(3), 28 (in Chinese).
邓安仲, 贺伟明, 杨毅, 等. 国防科技, 2019, 40(3), 28.
10 Li X Y, Zhang Z, Xue S D, et al. Thin-Walled Structures, 2022, 178, 109491.
11 Chen W, Yin Y, Hu J, et al. In:IASS 2019 Barcelona Symposium. Spain, 2019, pp. 1.
12 Huang B Y. Urban Architecture Space, 27(9), 205 (in Chinese).
黄宝仪. 城市住宅, 2020, 27(9), 205.
13 Li Y B, Huang C L, Zhao Q, et al. Materials Reports, 2021, 35(S1), 576 (in Chinese).
李永波, 黄成亮, 赵桥, 等. 材料导报, 2021, 35(S1), 576.
14 Gao Y, Tang B, Ji G, et al. Materials Research Express, 2021, 8(6), 066404.
15 Xie D J, Zu M, Li M Y, et al. Advanced Materials, 2023, 35(47), 2302973.
16 Huang C H. Preparation, microstructure and infrared stealth property of aluminum doped zinc oxide. Master's Thesis, Shandong Unversity, China, 2019 (in Chinese).
黄朝晖. 掺铝氧化锌的制备、结构形貌及红外隐身性能研究. 硕士学位论文, 山东大学, 2019.
17 Chandra S, Franklin D, Cozart J, et al. American Chemical Society Photonics, 2018, 5(11), 4513.
18 Li E, Ma W, Zhang P, et al. Acta Materialia, 2021, 209, 116795.
19 Sun X X, Li Y B, Huang Y X, et al. Advanced Functional Materials, 2021, 32(5), 2107508.
20 Wei J J, Zhao R, Liu X B. Journal of Magnetism and Magnetic Materials, 2012, 324(20), 3323.
21 Wang J, Zhang H, Bai S X, et al. Journal of Magnetism and Magnetic Materials, 2007, 312(2), 310.
22 Guo C, Yang Z H, Shen S, et al. Journal of Magnetism and Magnetic Materials, 2018, 454, 32.
23 Feng H C, Zhang J, Zhao Z Y, et al. Science and Technology and Innovation, 2022(23), 159 (in Chinese).
冯海潮, 张健, 赵志勇, 等. 科技与创新, 2022(23), 159.
24 新浪军事. 可与周边环境融为一体!法国自适应多光谱伪装系统(2021. 12. 1)[2024. 1. 21]. https:∥mil. news. sina. com. cn/world/2021-12-01/doc-ikyakumx1383902. shtml
25 Fan X P, Dou J Z, Guo R P. New Chemical Materials, 2009, 37(5), 9 (in Chinese).
范夕萍, 窦建芝, 郭瑞萍. 化工新型材料, 2009, 37(5), 9.
26 Kim H, Choi J, Kim K K, et al. Nature Communications, 2021, 12(1), 4658.
27 Wen J X, Wang M H, Peng Y, et al. Materials China, 2016, 35(1), 57 (in Chinese).
温佳星, 王美涵, 彭洋, 等. 中国材料进展, 2016, 35(1), 57.
28 Liu D Q, Zheng W W, Cheng H F, et al. Infrared Technology, 2010, 32(3), 181 (in Chinese).
刘东青, 郑文伟, 程海峰, 等. 红外技术, 2010, 32(3), 181.
29 Liu D Q, Ji H N, Peng R F, et al. Solar Energy Materials and Solar Cells, 2018, 185, 210.
30 Ding P, Wang P, Su J C, el at. Journal of Physicsd-Applied Physics, 2022, 55(34), 345103.
31 Salihoglu O, Uzlu H B, Yaka R, et al. Nano Letters, 2018, 18, 4541.
32 Balci O, Polat E O, Kakenov N, et al. Nature Communications, 2015, 6(1), 6628.
33 Wang Y, Liu D Q, Zhou F et al. Materials China, 2020, 39(5), 404 (in Chinese).
王义, 刘东青, 周峰, 等. 中国材料进展, 2020, 39(5), 404.
[1] 陈帅, 陶凤和, 贾长治, 孙河洋. 选区激光熔化成型4Cr5MoSiV1钢的组织与性能优化[J]. 材料导报, 2021, 35(16): 16126-16132.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed