Please wait a minute...
材料导报  2025, Vol. 39 Issue (3): 23090070-11    https://doi.org/10.11896/cldb.23090070
  金属与金属基复合材料 |
强流脉冲电子束表面改性技术及其在热障涂层改性中的研究进展
温强1,2, 李向成1,2, 花银群1,2, 关庆丰3, 蔡杰1,2,*
1 江苏大学先进制造与现代装备技术工程研究院,江苏 镇江 212013
2 江苏大学机械工程学院,江苏 镇江 212013
3 江苏大学材料科学与工程学院,江苏 镇江 212013
High-current Pulsed Electron Beam Surface Modification Technology and Its Modifications in Thermal Barrier Coatings
WEN Qiang1,2, LI Xiangcheng1,2, HUA Yinqun1,2, GUAN Qingfeng3, CAI Jie1,2,*
1 Institute of Advanced Manufacturing and Modern Equipment Technology, Jiangsu University, Zhenjiang 212013, Jiangsu, China
2 School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
3 School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
下载:  全 文 ( PDF ) ( 81007KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着材料科学领域的不断发展,表面改性技术在提升材料性能和功能方面扮演着十分重要的角色。强流脉冲电子束表面改性技术作为一种先进的材料表面加工方法,以其独特的高能量密度和快速加工特性,逐渐成为研究热点之一,其能够有效提高材料表面硬度、耐磨性、抗蚀性、抗高温氧化性等性能。本文综述了强流脉冲电子束表面改性技术的改性原理、应用领域以及其对材料微观结构演变及性能提升的影响机制,并重点探讨了该技术在热障涂层领域的研究进展,以及未来的发展方向。强流脉冲电子束表面改性技术为改善热障涂层微观结构和界面性能提供了新的研究方法和思路,对延长热障涂层高温寿命具有重要研究意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
温强
李向成
花银群
关庆丰
蔡杰
关键词:  强流脉冲电子束技术  表面改性  改性特征  热障涂层  材料性能    
Abstract: With the continuous development in the field of materials science, surface modification technology plays a more important role in enhancing material properties and functions. As an advanced material surface processing method, high-current pulsed electron beam (HCPEB) surface modification technology has progressively become one of the research hotspots with its unique advantages such as high energy density and fast processing characteristics. It can effectively improve the material surface hardness, wear resistance, corrosion resistance, high-temperature oxidation resistance and other properties. This summary comprehensively elucidated the principles and the prevalent applications of HCPEB, analyzed it's influence on the evolution of material microstructure and performance enhancement. Then it mainly discussed the research progress, as well as the future development direction of this technology in the field of thermal barrier coating (TBC). HCPEB surface modification technology is a new method and view for improve the microstructure and interfacial properties of TBC, which is of great research significance to enhance the high-temperature lifetime of TBC.
Key words:  high-current pulsed electron beam (HCPEB) technology    surface modification    modification characteristic    thermal barrier coating (TBC)    material performance
出版日期:  2025-02-10      发布日期:  2025-02-05
ZTFLH:  TG174.44  
基金资助: 国家自然科学基金(U1933124),中国博士后科学基金项目(2021M701476)
通讯作者:  *蔡杰,江苏大学机械工程学院副研究员,博士研究生导师,江苏大学材料科学与工程专业博士,美国内布拉斯加大学-林肯分校访问学者,主要从事脉冲电子束表面强化技术及应用、激光热力复合表面强化技术、先进航空发动机/地面燃气轮机热防护涂层等方面的研究工作。caijie@ujs.edu.cn   
作者简介:  温强,江苏大学机械工程学院研究生。在蔡杰副研究员的指导下进行研究,目前主要研究领域为高温防护涂层。
引用本文:    
温强, 李向成, 花银群, 关庆丰, 蔡杰. 强流脉冲电子束表面改性技术及其在热障涂层改性中的研究进展[J]. 材料导报, 2025, 39(3): 23090070-11.
WEN Qiang, LI Xiangcheng, HUA Yinqun, GUAN Qingfeng, CAI Jie. High-current Pulsed Electron Beam Surface Modification Technology and Its Modifications in Thermal Barrier Coatings. Materials Reports, 2025, 39(3): 23090070-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23090070  或          http://www.mater-rep.com/CN/Y2025/V39/I3/23090070
1 Zou J X, Grosdidier T, Bolle B, et al. Metallurgical and Materials Transactions A, 2007, 38, 2061.
2 Manco E, Cozzolino E, Astarita A. Surface Engineering, 2022, 38, 217.
3 Cai J, Guan Q F, Lv P, et al. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2014, 337, 90.
4 Cai J, Wei J Z, Zu Z K, et al. Materials Characterization, 2022, 191, 112074.
5 Cai J, Li C, Yao Y M, et al. Corrosion Science, 2021, 182, 109281.
6 Zhang K M, Zou J X, Grosdidier T, et al. Surface and Coatings Technology, 2006, 201, 1393.
7 Cai J, Guan Q F, Yang S Z, et al. Surface and Coatings Technology, 2014, 254, 187.
8 Song Y M, Li S L, Zhong Q H. Equipment Manufacturing Technology, 2003(1), 5(in Chinese).
宋宜梅, 李少林, 钟庆华. 广西机械, 2003(1), 5.
9 Kim J, Lee W J, Park H W. International Journal of Precision Engineering and Manufacturing, 2016, 17, 1575.
10 Yemini M, Hadad B, Liebes Y, et al. Nanotechnology, 2009, 20, 245302.
11 Valkov S, Ormanova M, Petrov P. Metals, 2020, 10, 1219.
12 Ozur G E, Proskurovsky D I, Rotshtein V P, et al. Laser and Particle Beams, 2003, 21, 157.
13 Pogrebnjak A D, Bakharev O G, Sushko V V, et al. Surface and Coa-tings Technology, 1998, 99, 98.
14 Murray J W, Kinnell P K, Cannon A H, et al. Precision Engineering, 2013, 37, 443.
15 Grosdidier T, Zou J X, Bolle B, et al. Journal of Alloys and Compounds, 2010, 504, S508.
16 Hao S Z, Gao B, Wu A M, et al. Materials Science Forum, 2005, 475, 3959.
17 Guan Q F, Pan L, Zou H, et al. Journal of Materials Science, 2004, 39, 6349.
18 Guan Q F, Zhang Q Y, Dong C, et al. Journal of Materials Science, 2005, 40, 5049.
19 Hu R Z, Zhu M, Wang H, et al. Acta Materialia, 2012, 60, 4695.
20 Xu F J, Tang G Z, Guo G W, et al. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2010, 268, 2395.
21 Gao B, Li K, Xing P F. Coatings, 2019, 9, 413.
22 Yang S, Guo Z X, Zhao L, et al. Applied Surface Science, 2019, 484, 453.
23 Mei X X, Liu X F, Wang C X, et al. Applied Surface Science, 2012, 263, 810.
24 Cai J, Yang S Z, Ji L, et al. Surface and Coatings Technology, 2014, 251, 217.
25 Konovalov S, Ivanov Y, Gromov V, et al. Materials, 2020, 13, 4567.
26 Meisner L L, Rotshtein V P, Markov A B, et al. Procedia Structural Integrity, 2016, 2, 1465.
27 Qin Y, Wang X G, Dong C, et al. Acta Physica Sinica, 2003, 52(12), 3043(in Chinese).
秦颖, 王晓钢, 董闯, 等. 物理学报, 2003, 52(12), 3043.
28 Gupta R K, Birbilis N. Corrosion Science, 2015, 92, 1.
29 Proskurovsky D I, Rotshtein V P, Ozur G E, et al. Surface and Coatings Technology, 2000, 125, 49.
30 Qin Y, Dong C, Wang X G, et al. Materials Science Forum, 2005, 475, 3673.
31 Han Z Y, Zou H, Wang Z P, et al. Advanced Materials Research, 2012, 560-561, 709.
32 Wang H H, Hao S Z. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2017, 403, 45.
33 Li M C, Hao S Z, Wen H, et al. Applied Surface Science, 2014, 303, 350.
34 Lv P, Sun X, Cai J, et al. Surface and Coatings Technology, 2017, 309, 401.
35 Zou Y, Cai J, Wan M Z, et al. Chinese Physics Letters, 2011, 28, 116102.
36 Li Y, Cai J, Zou Y, et al. Chinese Journal of High Pressure Physics, 2011, 25(3), 268 (in Chinese).
李艳, 蔡杰, 邹阳, 等. 高压物理学报, 2011, 25(3), 268.
37 Guan Q F, Zhang Q Y, Dong C. ISIJ International, 2008, 48, 235.
38 Dong S H, Zhang C L, Zhang L Y, et al. Journal of Alloys and Compounds, 2018, 755, 251.
39 Zhang L Y, Peng C T, Guan J T, et al. Nanomaterials, 2019, 9, 74.
40 Zhang C L, Lv P, Xia H D, et al. Vacuum, 2019, 167, 263.
41 Zhang C L, Lv P, Cai J, et al. Journal of Alloys and Compounds, 2017, 723, 258.
42 Tian N N, Li S W, Zhang C L, et al. Materials Research Express, 2020, 6, 1265g3.
43 Padture N P, Gell M, Jordan E H. Science, 2002, 296, 280.
44 Chen W J, Song P, Gao D, Journal of Aeronautical Materials, 2022, 42(1), 15 (in Chinese).
陈卫杰, 宋鹏, 高栋, 等. 航空材料学报, 2022, 42(1), 15.
45 Gil A, Shemet V, Vassen R, et al. Surface and Coatings Technology, 2006, 201, 3824.
46 Wang Z P, Fei Y J, Liu Y K. Surface Technology, 2021, 50(7), 126 (in Chinese).
王志平, 费宇杰, 刘延宽. 表面技术, 2021, 50(7), 126.
47 Kang J, Liu Y, Geng L L, et al. Journal of Alloys and Compounds, 2022, 924, 166619.
48 Zhang Q, Li C J, Li C X, et al. Surface and Coatings Technology, 2008, 202, 3378.
49 Zhao X F, Li L, Zhang H, et al. Acta Metallurgica Sinica, 2022, 58(4), 503 (in Chinese).
赵晓峰, 李玲, 张晗, 等. 金属学报, 2022, 58(4), 503.
50 Chen S F, Liu S Y, Wang Y, et al. Journal of Thermal Spray Technology, 2014, 23, 809.
51 Vande Put A, Oquab D, Péré E, et al. Oxidation of Metals, 2011, 75, 247.
52 Utu D, Brandl W, Marginean G, et al. Vacuum, 2005, 77, 451.
53 Curry N, Tang Z L, Markocsan N, et al. Surface and Coatings Technology, 2015, 268, 15.
54 Cai J, Gao C Z, Lv P, et al. Journal of Alloys and Compounds, 2019, 784, 1221.
55 Cai J, Guan Q F, Lv P, et al. Journal of Thermal Spray Technology, 2015, 24, 798.
56 Cai J, Gao J, Hua Y Q, et al. Acta Metallurgica Sinica, DOI:10. 11900/0412. 1961. 2022. 00377 (in Chinese).
蔡杰, 高杰, 花银群, 等. 金属学报, DOI:10. 11900/0412. 1961. 2022. 00377.
57 Muller G, Schumacher G, Strauβ D. Surface and Coatings Technology, 1998, 108, 43.
58 Wang Z, Mei X X, Wang C X, et al. High Power Laser and Particle Beams, 2009, 21(9), 1400 (in Chinese).
王忠, 梅显秀, 王存霞, 等. 强激光与粒子束, 2009, 21(9), 1400.
59 Cai J, Guan Q F, Hou X L, et al. Applied Surface Science, 2014, 317, 360.
60 Cai J, Lv P, Guan Q F, et al. ACS Applied Materials and Interfaces, 2016, 8, 32541.
61 Han Z Y, Han J, Jing Z Z. Journal of Nanomaterials, 2016, 2016, 1.
62 Han Z Y, Shi W X, Wang Z, et al. Materials Reports, 2019, 33(7), 2392 (in Chinese).
韩志勇, 史文新, 王者, 等. 材料导报, 2019, 33(7), 2392.
63 Zhao P P, Shen M L, Gu Y, et al. Corrosion Science, 2017, 126, 317.
64 Zhao P P, Shen M L, Gu Y, et al. Surface and Coatings Technology, 2015, 281, 44.
65 Cai J, Yao Y M, Wei J Z, et al. Surface and Coatings Technology, 2021, 422, 127499.
66 Pereira J C, Zambrano J C, Tobar M J, et al. Surface and Coatings Technology, 2015, 270, 243.
67 Gao C Z, Cai J, Zu Z K, et al. The Chinese Journal of Nonferrous Metals, 2020, 30(7), 1634 (in Chinese).
高承钻, 蔡杰, 祖张坤, 等. 中国有色金属学报, 2020, 30(7), 1634.
68 Cai J, Yao Y M, Gao C Z, et al. Journal of Alloys and Compounds, 2021, 881, 160651.
69 Li X C, Zhu W K, Shen H, et al. Surface and Coatings Technology, 2021, 427, 127796.
70 Ahmadi-Pidani R, Shoja-Razavi R, Mozafarinia R, et al. Ceramics International, 2013, 39, 2473.
71 Huo K, Dai F Z, Qian W, et al. Corrosion Science, 2022, 209, 110731.
72 Han Z Y, Li X X, Lu B W, et al. Rare Metal Materials and Engineering, 2023, 52(6), 2147 (in Chinese).
韩志勇, 李雪晓, 卢博文, 等. 稀有金属材料与工程, 2023, 52(6), 2147.
73 Li M Y, Zhang Z Y, Sun X F, et al. Acta Metallurgica Sinica, 2002(9), 989 (in Chinese).
李美姮, 张重远, 孙晓峰, 等. 金属学报, 2002(9), 989.
[1] 屈沅治, 张蝶, 兰雅婧, 任晗, 刘阔, 黄宏军, 梁本亮, 颜鲁婷. 水基钻井液用多元协同纳米润滑剂的研究进展[J]. 材料导报, 2025, 39(2): 23090016-6.
[2] 裴海华, 赵建伟, 郑家桢, 张贵才, 张菅, 蒋平. 改性纳米锂皂石强化高温泡沫调驱性能研究[J]. 材料导报, 2025, 39(2): 22110070-5.
[3] 陈京健, 徐能能, 芦拓, 魏群山. 锌阳极氮掺杂多孔碳表面功能层设计及可逆性研究[J]. 材料导报, 2024, 38(6): 23040217-6.
[4] 王玉锋, 付前刚, 杨俊, 张华, 杨岩. 热障涂层对DD6单晶燃气热腐蚀及力学性能的影响[J]. 材料导报, 2024, 38(18): 23070037-6.
[5] 李鹏程, 魏嘉佳, 孟昊天, 王文轩, 李佳峻, 李达, 涂秋芬. 静电自组装法构建抗菌抗凝涂层的研究[J]. 材料导报, 2024, 38(14): 23020101-9.
[6] 刘筱涵, 杨培, 周晓燕. 等离子体改性增强农林生物质复合材料界面相容性研究进展[J]. 材料导报, 2024, 38(13): 23030072-11.
[7] 金磊源, 胡芳坤, 姜晓娇, 夏立, 刘冉, 徐佳乐, 涂秋芬, 熊开琴. 基于Notch信号通路抑制剂的多功能血管支架涂层制备及表征[J]. 材料导报, 2024, 38(12): 22120030-8.
[8] 赵云松, 张迈, 戴建伟, 郭会明, 孙志军, 郭媛媛, 张剑, 花银群, 霍坤, 戴峰泽. 航空发动机涡轮叶片热障涂层研究进展[J]. 材料导报, 2023, 37(6): 21040168-7.
[9] 刘电超, 金国, 井勇智, 崔秀芳, 房永超, 陈卓, 王薪贺. 稀土氧化物掺杂对YSZ热障涂层热物理性能影响的研究进展[J]. 材料导报, 2023, 37(24): 22040242-6.
[10] 杨长兴, 王固霞, 郭生伟. 油酸改性石墨相氮化碳的制备、表征及摩擦学性能研究[J]. 材料导报, 2023, 37(23): 22100019-7.
[11] 刘嘉航, 吕哲, 周艳文, 解志文, 陈浩, 程蕾. 用于热障涂层的高熵陶瓷材料研究进展[J]. 材料导报, 2023, 37(22): 22060081-11.
[12] 郑洋, 张璇, 卢佳, 何东磊, 宿振宇, 牛伟, 于镇洋, 孙荣禄, 李岩. 医用镁合金体内降解行为与表面改性研究进展[J]. 材料导报, 2023, 37(19): 22020134-16.
[13] 郭远来, 缪婉, 钱继东, 熊开琴, 涂秋芬. “一步法”构建基于Zn2+的抗菌表面[J]. 材料导报, 2023, 37(12): 22030058-6.
[14] 易荣, 王法衡, 刘永财, 李涤尘, 刘亚雄. 聚醚醚酮的表面改性策略综述[J]. 材料导报, 2023, 37(11): 21070057-12.
[15] 孟兆通, 张昌海, 迟庆国, 张天栋. 固体绝缘材料中空间电荷的主要影响因素及抑制方法[J]. 材料导报, 2023, 37(1): 21040316-9.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed