Please wait a minute...
材料导报  2024, Vol. 38 Issue (24): 23100230-9    https://doi.org/10.11896/cldb.23100230
  无机非金属及其复合材料 |
金属波纹管浆锚连接预制钢筋混凝土剪力墙声发射性能研究
毕钰, 秦拥军*, 阳毅恒, 陈奇, 杨亮
新疆大学建筑工程学院,乌鲁木齐 830047
Study on Acoustic Emission Performance of Precast Reinforced Concrete Shear Wall with Metal Bellows Slurry Anchor Connection
BI Yu, QIN Yongjun*, YANG Yiheng, CHEN Qi, YANG Liang
School of Civil Engineering and Architecture, Xinjiang University, Urumqi 830047, China
下载:  全 文 ( PDF ) ( 10074KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究不同轴压比下现浇与预制剪力墙破坏机理的差异,本试验采用静力加载的方式,对三种墙(一种为整体现浇对比试件,另两种为采用金属波纹管浆锚连接的预制剪力墙)进行低周往复荷载试验。通过DIC与AE两种无损检测设备,运用b-value、能量、振铃计数、RA-AF值等特征参数进行定量分析。由试验现象和破坏特征发现:所有试件均出现了不同程度的墙角损伤,现浇对比试件的裂缝分布更为均匀,金属波纹管浆锚连接预制试件水平接缝处裂缝宽度最大。运用滑动时间窗口算法减小了某段数据过少而可能产生的b-value误差,可以更加有效直观地表征试件的损伤过程,较高的轴压比带来了更迅速和严重的破坏。各试件破坏模式相似,浆锚连接钢筋混凝土剪力墙承载能力接近现浇对比试件,达到“等同现浇”的效果。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
毕钰
秦拥军
阳毅恒
陈奇
杨亮
关键词:  预制混凝土剪力墙  数字图像相关法  声发射  抗震性能  损伤分析    
Abstract: A proposed static loading scheme was adopted to conduct low circumferential reciprocating load tests on three pieces of walls, one for a monolithic cast-in-place comparison specimen and two for precast shear walls connected by metal bellows slurry anchors. Acoustic emission tests were conducted to investigate the similarities and differences in the damage mechanisms of cast-in-place and prefabricated as well as shear walls with different axial compression ratios, which were quantitatively analyzed via two types of NDT equipment, DIC and AE, and by using characte-ristic parameters such as b-value, energy, ringing counts, and RA-AF values. Observation of the test phenomena and damage characteristics revealed that: all specimens had corner damage with different degrees. The crack distribution of cast-in-place contrasting specimens was more uniform than the others, and the crack width at the horizontal joint of prefabricated specimens with metal bellows slurry anchor connection was the largest. The sliding time window algorithm was used to reduce the b-value error caused by too little data in a section, thus it can more effectively and intuitively characterize the damage process of the specimens. And higher axial compression ratios brought more rapid and severe damage. The damage patterns of these three specimens were similar, and the bearing capacity of the slurry-anchored reinforced concrete shear wall was close to that of the cast-in-place specimen, which achieved a effect of equivalent cast-in-place.
Key words:  precast concrete shear wall    digital image correlation    acoustic emission    seismic performance    damage analysis
出版日期:  2024-12-25      发布日期:  2024-12-20
ZTFLH:  TU375.4  
基金资助: 自治区科技计划项目(2019E0231)
通讯作者:  * 秦拥军,教授,博士研究生导师,工程硕士,现任新疆大学建筑工程学院党委书记、院长,1994年于新疆工学院获得工业与民用建筑工程专业学士学位,2008年于西安建筑科技大学获得工业工程硕士学位。主要从事装配式混凝土结构、高性能混凝土结构、建筑固废综合循环再利用及再生混凝土应用技术研究、沙漠砂混凝土关键增韧技术研究。近年来主持国家自然科学基金三项,发表论文一百余篇,其中近五年被EI/SCI收录三十余篇。 qyjjg@xju.edu.cn   
作者简介:  毕钰,2020年于新疆大学获得学士学位,现为新疆大学硕士研究生,专业为土木工程,在秦拥军教授的指导下进行研究。主要研究方向为装配式混凝土结构、混凝土无损检测、混凝土耐久性。
引用本文:    
毕钰, 秦拥军, 阳毅恒, 陈奇, 杨亮. 金属波纹管浆锚连接预制钢筋混凝土剪力墙声发射性能研究[J]. 材料导报, 2024, 38(24): 23100230-9.
BI Yu, QIN Yongjun, YANG Yiheng, CHEN Qi, YANG Liang. Study on Acoustic Emission Performance of Precast Reinforced Concrete Shear Wall with Metal Bellows Slurry Anchor Connection. Materials Reports, 2024, 38(24): 23100230-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23100230  或          http://www.mater-rep.com/CN/Y2024/V38/I24/23100230
1 Li R, Huang X K, Tian C Y. Journal of Building Structures, 2018, 39(S2), 79 (in Chinese).
李然, 黄小坤, 田春雨. 建筑结构学报, 2018, 39(S2), 79.
2 Wan M L, Zeng B. Journal of Building Structures, 1986(4), 54 (in Chinese).
万墨林, 曾兵. 建筑结构学报, 1986(4), 54.
3 Belleri Andrea, Riva Paolo. PCI Journal, 2012, 57(1), 97.
4 Zhu Z F, Guo Z X. China Civil Engineering Journal, 2012, 45(1), 69 (in Chinese).
朱张峰, 郭正兴. 土木工程学报, 2012, 45(1), 69.
5 Zhi Q, Guo Z X, Xiao Q D, et al. Construction and Building Materials, 2017, 150, 190.
6 Wu Y T, Xiao Y, Anderson J C. Journal of Structural Engineering, 2009, 135, 1398.
7 Zhu Z F, Guo Z X. Journal of Civil Engineering, 2017, 22, 2890.
8 Lukman Hakim. PCI design handbook precast and prestressed concrete, Precast/Prestressed Concrete Institute (PCI), USA, 2017.
9 Li X R, Zhao Z Z, Qian J R, et al. Journal of Harbin Institute of Technology, 2020, 52(10), 1 (in Chinese).
李潇然, 赵作周, 钱稼茹, 等. 哈尔滨工业大学学报, 2020, 52(10), 1.
10 Wu D Y, Liang S T, Guo Z X, et al. Journal of Harbin Institute of Technology,2015, 47(12), 112 (in Chinese).
吴东岳, 梁书亭, 郭正兴, 等. 哈尔滨工业大学学报, 2015, 47(12), 112.
11 Chen Y G, Liu J B, Guo Z X, et al. Journal of Harbin Institute of Technology, 2013, 45(6), 83 (in Chinese).
陈云钢, 刘家彬, 郭正兴, 等. 哈尔滨工业大学学报, 2013, 45(6), 83.
12 Chen X, Li J X, Yang Y S, et al. Journal of Shenyang Jianzhu University, 2021, 37(5), 814 (in Chinese).
陈昕, 李家旭, 杨永生, 等. 沈阳建筑大学学报(自然科学版), 2021, 37(5), 814 .
13 Ma G F, Du Q J. Construction and Building Materials, 2020, 250, 118860.
14 Grosse C U, Finck F. Cement and Concrete Composites, 2006, 28,330.
15 Song G B, Wang C J, Wang B. Applied Sciences, 2017, 7, 1.
16 JCMS, Monitoring method for active cracks in concrete by AE, Japan Construction Materials and Housing Equipments Industries Federation, Japan, 2003.
17 Verstrynge E, Lacidogna G, Accornero F, et al. Construction and Building Materials, 2021, 268, 121089.
18 Wu Y Q, Li S L. Measurement, 2022, 190, 110729.
19 Ma Y F, Li S L, Wu Y Q, et al. Construction and Building Materials, 2019, 221, 800.
20 Ren D R, Liu B G, Sun J L, et al. Construction and Building Materials, 2019, 224, 359.
21 Shan W C, Liu J P, Ding Y, et al. Cement and Concrete Composites, 2021, 118, 103961.
22 Du F Z, Li X L, Li D S, et al. Structural Control and Health Monitoring, 2022, 29, 312.
23 Giulio Siracusano, Francesco Lamonaca, Riccardo Tomasello, et al. Mechanical Systems and Signal Processing, 2016, 75, 109.
24 Eleni Tsangouri, Dimitrios G. Aggelis. Construction and Building Materials, 2019, 224, 198.
25 Liu C Y, Zhao G M, Xu W S, et al. International Journal of Mining Science and Technology, 2023, 33, 275.
26 Wu S Y, Sikdar Partha, S. bhat Gajanan. Construction and Building Materials, 2021, 21(3), 33.
27 Reboul N, Grazide C, Roy N, et al. Construction and Building Materials, 2020, 259, 119661.
28 Hernán Xargay, Paula Folino, Nicolás Nuñez, et al. Construction and Building Materials, 2018, 187, 519.
29 Wang Y, Zhang B, Gao S H, et al. Theoretical and Applied Fracture Mechanics, 2021, 111, 102847.
30 Huo L S, Cheng H, Kong Q Z, et al. Sensors, 2019, 19, 1.
31 Ren D R, Liu B G, Chen S J, et al. Construction and Building Materials, 2020, 249, 118712.
32 Li D S, Zhou J L, Ou J P. Construction and Building Materials, 2021, 271, 121551.
33 Wang J, Xiang Z H, Niu J G, et al. Materials Reports, DOI: 10. 11896/cldb. 22100117(in Chinese)
王俊, 相泽辉, 牛建刚, 等. 材料导报, DOI: 10. 11896/cldb. 22100117.
34 Gutenberg B, Richter C F. California Institute of Technology, 1942, (Division of the Geological Sciences, contribution no. 719), 105.
35 Rilem Technical Committee. Innovative ae and ndt techniques for on-site measurement of concrete and masonry structures, Rilem Technical Committee, FRA, 2016.
36 Kenji Ikedac, Masayasu Ohtsub, Tomoki ShiotaniaU. Construction and Building Materials, 2001, 15(5-6), 235.
37 Jiang J J, Deng Z G, Ouyang Z H, et al. Coal Science and Technology, 2019, 47(3), 120. (in Chinese).
蒋军军, 邓志刚, 欧阳振华, 等. 煤炭科学技术, 2019, 47(3), 120.
38 Men J J, Lan T, Zhou Q, et al. Acoustic emission properties of concrete elements-tests, theory and methods, Science Press, China, 2020, pp.10(in Chinese).
门进杰, 兰涛, 周琦, 等. 混凝土构件的声发射性能-试验、理论和方法, 科学出版社, 2020, pp.10.
39 Zhao H X, Ding M L, Liu X Y, et al. Henan Science Technology, 2023, 42(8), 69(in Chinese).
赵海溪, 丁梦磊, 刘雪艳, 等. 河南科技, 2023, 42(8), 69.
40 Nicolas Ospitia, Eleni Tsangouri, Ali Pourkazemi, et al. Construction and Building Materials, 2021, 296, 123622.
41 Yue J G, Zhen D. Journal of Building Structures, 2017, 38(8), 156(in Chinese).
岳健广, 镇东. 建筑结构学报, 2017, 38(8), 156.
42 Sagar R V, Rao M V M S. Construction and Building Materials, 2014, 70, 460.
43 Li S T, Chen X D, Zhang J H. Construction and Building Materials, 2021, 292, 123324.
44 Zhu X Y, Chen X D, Bai Y, et al. Construction and Building Materials, 2022, 321, 126346.
45 Ju S Y, Li D S, Jia J Q. Mechanical Systems and Signal Processing, 2022, 178, 109253.
46 Farhidzadeh Alireza, Epackachi Siamak, Salamone Salvatore, et al. Smart Materials and Structures, 2015, 24, 115028.
[1] 吴思远, 单忠德, 陈恳, 刘丰, 刘晓军, 严春晖. 3D打印连续纤维增强树脂T型梁的弯曲性能[J]. 材料导报, 2024, 38(7): 22090150-7.
[2] 陈宇良, 王双翼, 李洪, 李培泽. 复杂应力状态下玻璃纤维再生混凝土损伤演变及应力-应变本构关系研究[J]. 材料导报, 2024, 38(24): 23080024-9.
[3] 王俊, 相泽辉, 牛建刚, 许文明. CFRP条带和混凝土帆布联合加固混凝土短柱声发射性能研究[J]. 材料导报, 2024, 38(14): 22100117-8.
[4] 万林林, 周启明, 邓朝晖. 工程陶瓷磨削过程的声发射在线监测研究进展[J]. 材料导报, 2023, 37(4): 21050196-11.
[5] 王向林, 毛江鸿, 宋志刚, 马佳星, 张军. 考虑时间效应的电化学修复后RC柱抗震性能试验研究[J]. 材料导报, 2023, 37(16): 21110218-6.
[6] 孟云蛟, 张有宏, 常新龙, 胡宽, 齐重阳, 王震, 朱雪蒙. 含双孔国产T800碳纤维复合材料层合板失效模式研究[J]. 材料导报, 2022, 36(14): 21030285-7.
[7] 毛江鸿, 薛倩倩, 张军, 罗林, 马佳星. 电化学修复后钢筋低周疲劳性能退化的时间效应及其影响[J]. 材料导报, 2022, 36(12): 21050263-7.
[8] 王凯伟, 曾凯, 刑保英, 易金权. DP780高强钢胶接点焊过程声发射信号特征及接头强度预测[J]. 材料导报, 2021, 35(6): 6157-6160.
[9] 周圣雄, 王威娜, 秦煜, 刘佳亮. 基于声发射特征参数的玻纤格栅复合梁阻裂机理表征[J]. 材料导报, 2021, 35(22): 22033-22038.
[10] 于江, 皮滟杰, 秦拥军. 循环载荷下再生混凝土损伤声发射特性[J]. 材料导报, 2021, 35(13): 13011-13017.
[11] 王哲伟, 周华飞, 谢子令. 定向钢纤维增强地质聚合物弯曲破坏的声发射特性[J]. 材料导报, 2021, 35(12): 12214-12219.
[12] 黄展鸿, 黄春芳, 张鉴炜, 江大志, 鞠苏. 声发射技术在纤维增强复合材料损伤检测和破坏过程分析中的应用研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1122-1128.
[13] 李雪换, 底月兰, 王海斗, 李国禄, 董丽虹. 基于声发射技术的热障涂层损伤行为[J]. 材料导报, 2018, 32(19): 3368-3374.
[14] 刘鑫, 杨鼎宜, 刘廉, 吕锦飞. 热-力耦合作用下PVA纤维混凝土力学性能及其声发射响应[J]. 材料导报, 2018, 32(18): 3135-3141.
[15] 何诗华,严捍东. 国内节能型剪力墙技术研究和应用现状分析[J]. 《材料导报》期刊社, 2018, 32(11): 1910-1915.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed