Please wait a minute...
材料导报  2024, Vol. 38 Issue (20): 23080071-10    https://doi.org/10.11896/cldb.23080071
  无机非金属及其复合材料 |
基于LCA的不同设计寿命沥青路面能耗排放分析
张磊*, 王鹏, 杨永志, 邢超, 谭忆秋
哈尔滨工业大学交通科学与工程学院,哈尔滨 150090
Energy Consumption and Emission Analysis of Asphalt Pavement with Different Design Working Years Based on LCA
ZHANG Lei*, WANG Peng, YANG Yongzhi, XING Chao, TAN Yiqiu
School of Transport Science and Engineering, Harbin Institute of Technology, Harbin 150090, China
下载:  全 文 ( PDF ) ( 2758KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究不同设计寿命沥青路面的能耗排放特征,建立生命周期评价体系,量化分析柔性基层沥青路面、典型半刚性基层沥青路面、高掺量胶粉沥青路面的能耗排放。通过灵敏度分析确定主要能耗排放环节,并分析水泥类型、温拌技术、再生技术及运输效率对三种沥青路面能耗排放的影响规律。结果表明,典型半刚性基层沥青路面的能耗强度分别比柔性基层沥青路面及高掺量胶粉沥青路面能耗强度高25.29%、153.03%,全球变暖潜值总量比两种长寿命沥青路面分别高106.97%、107.99%;水泥生产、沥青生产、加热及运输环节为主要能耗排放环节;适用于水稳基层的通用水泥中,矿渣硅酸盐水泥能耗排放最低,替换掉普通硅酸盐水泥后典型半刚性基层沥青路面及高掺量胶粉沥青路面碳排放量分别下降了13.17%、12.43%;采用温拌技术后,柔性基层沥青路面碳排放量下降幅度最大,降低了2.41%,高掺量胶粉沥青路面能耗强度下降幅度最大,降低了3.71%;当RAP掺量达到30%时,三类沥青路面能耗强度分别下降20.64%、18.56%、15.26%,碳排放量分别下降6.92%、3.92%、4.39%;运输效率提升幅度与沥青路面的能耗排放减少率呈正相关,运输效率每提升10%,三类沥青路面能耗强度分别下降1.55%、1.63%、2.10%,碳排放量分别下降4.03%、3.26%、3.07%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张磊
王鹏
杨永志
邢超
谭忆秋
关键词:  道路工程  沥青路面  生命周期评价  能耗  碳排放  设计寿命    
Abstract: In order to study the energy consumption and carbon emission characteristics of asphalt pavement with different design life, the life cycle evaluation system was established. The energy consumption and carbon emission of flexible base asphalt pavement, typical semi rigid base asphalt concrete pavement and high content rubber modified asphalt pavement were quantitatively analyzed. By analyzing the sensitivity, this work identified the main links of energy consumption and carbon emission. And the influence of cement type, warm mixing technology, recycling technology and transport efficiency on the energy consumption and carbon emission of three kinds of asphalt pavement were analyzed. According to the research results, the energy consumption intensity of typical semi rigid base asphalt concrete pavement is 25.29% and 153.03% higher than that of flexible base asphalt pavement and high content rubber modified asphalt pavement, and the global warming potential value is 106.97% and 107.99% higher than that of the two long-life asphalt pavement, respectively. Cement production, asphalt production, heating and transportation are the main energy consumption and emission links. Among the general-purpose cements used in cement stabilized gravel bases, Portland blast-furnace slag cement (PS) has the lowest energy consumption and carbon emissions. After replacing ordinary Portland cement (PO) by PS, the carbon emissions of typical semi rigid base asphalt concrete pavement and high content rubber modified asphalt pavement dropped by 13.17% and 12.43%. After using the warm mixing technology, the carbon emission of flexible base asphalt pavement decreased the most, by 2.41% and the energy consumption intensity of high content rubber modified asphalt pavement decreased the most, by 3.71%. The reduction rate of energy consumption and carbon emission of typical semi-rigid asphalt pavement after using the warm mixing technology is relatively small. When the RAP content is 30%, three types of asphalt pavement decreases by 20.64%, 18.56% and 15.26% respectively, and the carbon emission decreases by 6.92%,3.92% and 4.39% respectively. There is a positive correlation between the improvement rate of transport efficiency and the reduction rate of energy consumption and carbon emission of asphalt pavement. When the transportation efficiency is increased by 10%, three types of asphalt pavement will decrease by 1.55%, 1.63%, 2.10% respectively, and the carbon emissions will decrease by 4.03%, 3.26%, 3.07% respectively.
Key words:  pavement engineering    asphalt pavement    life cycle assessment    energy consumption    carbon emission    design working years
出版日期:  2024-10-25      发布日期:  2024-11-05
ZTFLH:  U41  
基金资助: 第二次青藏高原综合科学考察研究任务(2021QZKK0205);黑龙江省自然科学基金(YQ2021E032);国家自然科学基金(52278447;U20A20315)
通讯作者:  * 张磊,哈尔滨工业大学交通科学与工程学院副教授、博士研究生导师。2008年哈尔滨工业大学道路桥梁与渡河工程专业本科毕业,2010年哈尔滨工业大学道路与铁道工程专业硕士毕业,2013年哈尔滨工业大学博士毕业后到哈尔滨工业大学工作至今。目前主要从事沥青基材料力学行为研究、路面低碳技术及环境友好型材料研发、特种沥青研发、路面智能检测技术等方面的研究工作。发表论文30余篇,包括Construction and Buil-ding Materials、Journal of Materials in Civil Engineering、Road Materials and Pavement Design等。hit.andy@foxmail.com   
引用本文:    
张磊, 王鹏, 杨永志, 邢超, 谭忆秋. 基于LCA的不同设计寿命沥青路面能耗排放分析[J]. 材料导报, 2024, 38(20): 23080071-10.
ZHANG Lei, WANG Peng, YANG Yongzhi, XING Chao, TAN Yiqiu. Energy Consumption and Emission Analysis of Asphalt Pavement with Different Design Working Years Based on LCA. Materials Reports, 2024, 38(20): 23080071-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23080071  或          http://www.mater-rep.com/CN/Y2024/V38/I20/23080071
1 Wang X C, Hou R G. Journal of Traffic and Transportation Engineering, 2007(6), 46(in Chinese).
王选仓, 侯荣国. 交通运输工程学报, 2007(6), 46.
2 Liu F. Study on damage behavior and structural life reasonable matching of long-life asphalt pavement. Master’s Thesis, South China University of Technology, China, 2010(in Chinese).
刘福明. 长寿命沥青路面损伤行为及其结构寿命合理匹配研究. 硕士学位论文, 华南理工大学, 2010.
3 Cui P, Sun L J, Hu X. Journal of Highway and Transportation Research and Development, 2006(10), 10(in Chinese).
崔鹏, 孙立军, 胡晓. 公路交通科技, 2006(10), 10.
4 Yi X Y. Journal of Highway and Transportation Research and Development, 2015, 32(6), 25(in Chinese).
易向阳. 公路交通科技, 2015, 32(6), 25.
5 Xue Z J, Wang C M, Zhang W, et al. Journal of Highway and Transportation Research and Development, 2015, 32(10), 37(in Chinese).
薛忠军, 王春明, 张伟, 等. 公路交通科技, 2015, 32(10), 37.
6 Häkkinen T, Mäkelä K. Technical research center of finland, Research Notes 1752. 1996.
7 Pan M P. The methodology research and application on energy consumption and carbon emissions of highway based on the life cycle assessment. Master’s Thesis, South China University of Technology, China, 2011(in Chinese).
潘美萍. 基于LCA的高速公路能耗与碳排放计算方法研究及应用. 硕士学位论文, 华南理工大学, 2011.
8 Li X Y. Environmental impact assessment of concrete pavement and asphalt pavement based on lCA. Master’s Thesis, Southeast University, China, 2015(in Chinese).
李肖燕. 基于LCA的水泥路面与沥青路面环境影响评价. 硕士学位论文, 东南大学, 2015.
9 Zaumanis M, Jansen J, Haritonovs V, et al. Procedia-Social and Behavioral Sciences, 2012, 48, 163.
10 Fusong W, Inge H, Fei Y, et al. Journal of Cleaner Production, 2021, 297, 126659.
11 Vega-Araujo D, Martinez-Arguelles G, Santos J. Procedia CIRP, 2020, 90, 285.
12 Wu S. Research on the environmental impact of hma pavement and WMA pavement based on lCA. Master’s Thesis, Southeast University, China, 2015(in Chinese).
吴爽. 基于LCA的热拌与温拌沥青路面环境影响研究. 硕士学位论文, 东南大学, 2015.
13 Zhang Y J. Study on energy saving and emission reduction of asphalt mixture and the technology of warm mix recycling. Master’s Thesis, Shenyang Jianzhu University, China, 2017 (in Chinese).
张玉杰. 沥青混合料节能减排评价及温拌再生技术研究. 硕士学位论文, 沈阳建筑大学, 2017.
14 Pantini S, Borghi G, Rigamonti L. Waste management,New York, N. Y., 2018, pp.80.
15 Garraín D, Lechón Y. Journal of Environmental Management, 2019, 252(C), 109646.
16 Alessandra B, Anna D E, Chiara M. Frontiers in Materials, 2020, 7, 572955.
17 Lin C, Guo G H, Meng Y, et al. Journal of Cleaner Production, 2020, 256(C), 120395.
18 Jiang Q, Wang F S, Liu Q T, et al. Materials, 2021, 14(5), 1244.
19 Feng M, Wenhao D, Zhen F, et al. Journal of Cleaner Production, 2020, 288, 125595.
20 Zheng M L, Chen W, Ding X Y, et al. Sustainability, 2021, 13(9), 4487.
21 Song Z Z, Zhu H Z. Journal of China & Foreign Highway, 2020, 40(5), 36(in Chinese).
宋庄庄, 朱洪洲. 中外公路, 2020, 40(5), 36.
22 Li X R, Chang R H. Guangdong Highway Communications, 2021, 47(2), 9(in Chinese).
李兴荣, 常荣华. 广东公路交通, 2021, 47(2), 9.
23 Cai H M. Research on the impact of asphalt on the environment during the use of asphalt. Ph. D. Thesis, China University of Petroleum, China, 2010(in Chinese).
才洪美. 沥青使用过程中对环境的影响研究. 博士学位论文, 中国石油大学, 2010.
24 Ou X M, Zhang X L. China Soft Science, 2009(S2), 208(in Chinese).
欧训民, 张希良. 中国软科学, 2009(S2), 208.
25 Lin R Y. Research on greenhouse gas emission evaluation system for asphalt pavement construction. Ph. D. Thesis, Chang’an University, China, 2014(in Chinese).
蔺瑞玉. 沥青路面建设过程温室气体排放评价体系研究. 博士学位论文, 长安大学, 2014.
26 Shen Y Q. Evaluation model and method for energy consumption and emissions of freeway reconstructed project. Master’s Thesis, Hefei University of Technology, China, 2017(in Chinese).
沈艺奇. 高速公路维修改造工程能耗及排放评价模型及方法. 硕士学位论文, 合肥工业大学, 2017.
27 Xu X N. Life cycle assessment of cement in China. Master’s Thesis, Dalian University of Technology, China, 2013. (in Chinese).
徐小宁. 中国水泥工业的生命周期评价. 硕士学位论文, 大连理工大学, 2013.
28 Zou J J. Environmental burden database and green development evaluation system for asphalt mixture production. Master’s Thesis, Harbin Institute of Technology, China, 2020(in Chinese).
邹晶晶. 沥青混合料生产环境负荷数据库及绿色发展评价体系研究. 硕士学位论文, 哈尔滨工业大学, 2020.
29 Wang L J. Study on integration optimization of asphalt pavement preventive maintenance timing and countermeasures. Master’s Thesis, Chang’an University, China, 2011(in Chinese).
王丽君. 沥青路面预防性养护时机与对策一体优化研究. 硕士学位论文, 长安大学, 2011.
30 Chen A Q. Study of decision method of asphalt pavement maintenance based on national test. Master’s Thesis, Southeast University, China, 2018(in Chinese).
陈安琪. 国检体系下的沥青路面养护决策研究. 硕士学位论文, 东南大学, 2018.
31 Li H Y. Energy saving and emission reduction and economic evaluation of warm mix asphalt pavement construction based on life cycle assessment. Master’s Thesis, Chongqing Jiaotong University, China, 2016(in Chinese).
李海洋. 基于LCA温拌沥青路面建设期节能减排效果及经济性评价. 硕士学位论文, 重庆交通大学, 2016.
32 Yu H Y, Ma T, Wang D W, et al. China Journal of Highway and Transport, 2020, 33(10), 1(in Chinese).
于华洋, 马涛, 王大为, 等. 中国公路学报, 2020, 33(10), 1.
[1] 田威, 云伟, 党可欣, 李腾. 不同钙源EICP溶液改良路基黄土动力特性研究[J]. 材料导报, 2024, 38(9): 22110275-9.
[2] 王超, 宋立昊, 孙彦广, 宫官雨. 道路沥青疲劳与断裂特性研究进展及发展趋势[J]. 材料导报, 2024, 38(9): 22090197-9.
[3] 延西利, 郑涛, 蒋双全, 李卫成. 沥青温拌技术分类及温拌效果的试验评价方法[J]. 材料导报, 2024, 38(4): 22080003-8.
[4] 兰添晖, 刘旭, 贾存兴, 王凌一, 张军朝, 马国伟, 张默. 沥青胶结料应变延迟恢复特性的动态剪切流变试验表征[J]. 材料导报, 2024, 38(4): 22020138-7.
[5] 唐杰, 赵华, 高红成. 碳化硅粉填充沥青混合料微波自愈合性能及合理掺量[J]. 材料导报, 2024, 38(20): 23080070-10.
[6] 仪明伟, 肖月, 林翔, 李强, 弋晓明. 沥青路面典型养护施工全过程直接能耗及碳排放量化分析[J]. 材料导报, 2024, 38(20): 23080173-11.
[7] 王超, 任正阳, 周波超, 宫官雨, 季晓斌. 不同种类道路沥青材料异味特征及析源分析[J]. 材料导报, 2024, 38(2): 22040368-5.
[8] 况栋梁, 马小军, 马晓燕, 袁斌, 侯俊鹏, 蔡军. 废机油残留物再生剂对老化沥青动态力学性能和组分迁移的影响[J]. 材料导报, 2024, 38(2): 22050182-8.
[9] 王志臣, 孙雅珍, 郭乃胜. 基于连续时间谱的沥青混合料黏弹性参数换算[J]. 材料导报, 2024, 38(18): 22120218-6.
[10] 董仕豪, 韩森, 宿金菲, 陈德, 苏会锋. 沥青路面表面纹理三维评价方法及其计算边界条件分析[J]. 材料导报, 2024, 38(18): 23050210-9.
[11] 赵晓康, 张久鹏, 胡勤石, 裴建中, 程科, 张柳. 长余辉水性道面标线涂料的制备与路用性能[J]. 材料导报, 2024, 38(15): 23020088-7.
[12] 关博文, 张硕文, 吴佳育, 王发平, 陈晓堃. 基于残余砂浆附着特征的再生混凝土硫酸盐传输模型[J]. 材料导报, 2024, 38(15): 23040046-8.
[13] 周荷雯, 姚敦雪, 杨晴. 废弃塑料热解技术碳足迹研究进展[J]. 材料导报, 2024, 38(14): 22120220-8.
[14] 张庆宇, 罗京, 赵毅, 刘英, 张新永. 微波加热集料的传热特性及其影响因素[J]. 材料导报, 2023, 37(8): 21110074-8.
[15] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed