Please wait a minute...
材料导报  2024, Vol. 38 Issue (19): 23070167-11    https://doi.org/10.11896/cldb.23070167
  无机非金属及其复合材料 |
黏土矿物材料在煤矿注浆领域的研究进展与前景展望
冯国瑞1,2, 姚鑫1,2, 王帅1,2, 姚顺1,2, 韩艳娜1,2, 黄丽1, 侯凯1,2,3,*
1 太原理工大学矿业工程学院,太原 030024
2 太原理工大学矿山岩层控制及灾害防控山西省重点实验室,太原 030024
3 山西转型综合改革示范区,太原 030006
Research Progress and Prospect of Clay Mineral Materials in the Field of Coal Mine Grouting
FENG Guorui1,2, YAO Xin1,2, WANG Shuai1,2, YAO Shun1,2, HAN Yanna1,2, HUANG Li1, HOU Kai1,2,3,*
1 School of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024, China
2 Key Laboratory of Shanxi Province for Mine Rocks Strata Control and Disaster Prevention, Taiyuan University of Technology, Taiyuan 030024, China
3 Shanxi Transformation and Comprehensive Reform Demonstration Zone, Taiyuan 030006, China
下载:  全 文 ( PDF ) ( 29729KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 我国煤炭资源的开采将进入深部开采阶段,传统的无机和有机注浆材料难以应对深部开采高应力、高地温、高岩溶水压的工程条件。黏土矿物具有特殊的层状结构及高膨胀性、良好的热稳定性、高火山灰活性等理化特征,已被广泛用于煤矿注浆材料领域。近年来,国内外学者开发了纯黏土注浆材料、水泥-黏土复合注浆材料以及有机物-黏土复合注浆材料,并阐明了各类材料的用途及黏土矿物作为外加填料的强化机理。本文基于对黏土矿物结构、特性、表征及应用的阐述,综合近年来国内外科研人员对煤矿含黏土注浆材料的研究,归纳了含黏土注浆材料的开发现状,探讨了黏土矿物用于煤矿注浆的必要条件和共性特征,指出了当前煤矿含黏土注浆材料研究中存在的问题,并对今后含黏土注浆材料的开发提出了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
冯国瑞
姚鑫
王帅
姚顺
韩艳娜
黄丽
侯凯
关键词:  黏土矿物  注浆材料  复合材料  煤矿开采    
Abstract: The mining of coal resources in China will enter the stage of deep mining, and traditional organic and inorganic grouting materials are difficult to cope with the engineering conditions of high stress, high temperature, and high rock solution water pressure in deep mining. Clay mineral have special layered structure, high expansibility, good thermal stability, high volcanic ash activity and other physical and chemical characteristics, which has been widely used in the field of grouting materials in coal mines. In recent years, scholars at home and abroad have developed pure clay grouting materials, cement clay composite grouting materials and organic clay composite grouting materials, clarified the uses of various materials, studied the strengthening mechanism of clay mineral as additional fillers. Based on the explanation of the structure, characteristics, characterization, and application of clay minerals, combined the research of domestic and foreign research teams on clay containing grouting materials in coal mines in recent years, This article summarizes the current development status of clay containing grouting materials, explores the necessary conditions and common characteristics of clay minerals used in coal mine grouting, points out the problems in current research on clay containing grouting materials in coal mines, and puts forward prospects for the future development of clay containing grouting materials.
Key words:  clay minerals    grouting materials    composite materials    coal mining
出版日期:  2024-10-10      发布日期:  2024-10-23
ZTFLH:  TD35  
基金资助: 国家杰出青年科学基金项目 (51925402);山西浙大新材料与化工研究院研发项目 (2022SX-TD010;2021SX-TD001);国家自然科学基金青年科学基金项目 (52104261)
通讯作者:  *侯凯,通信作者,太原理工大学矿业工程学院副研究员、硕士研究生导师。2013年6月毕业于中南大学,获工学学士学位;2015年6月毕业于昆明理工大学,获工学硕士学位;2019年12月,中南大学博士毕业后到太原理工大学工作至今。目前主要从事多金属硫化矿和非金属矿选矿、矿物材料高值化应用的研究工作。以第一作者发表中英文论文10篇,出版专著1部,授权专利4项。kaihou2015@163.com   
作者简介:  冯国瑞,太原理工大学矿业工程学院教授、博士研究生导师,国家杰出青年科学基金获得者、国家优秀青年科学基金获得者、国家“万人计划”科技创新领军人才。1999年7月,本科毕业于太原理工大学土建专业,获工学学士学位;2002年6月,研究生毕业于太原理工大学采矿工程专业,获工学硕士学位;2009年6月,博士毕业于太原理工大学岩土工程专业,获工学博士学位。目前主要从事难采煤炭资源安全绿色开采与灾害防控理论与技术的研究工作。发表SCI、EI收录论文200余篇,授权国家发明专利100余项。
引用本文:    
冯国瑞, 姚鑫, 王帅, 姚顺, 韩艳娜, 黄丽, 侯凯. 黏土矿物材料在煤矿注浆领域的研究进展与前景展望[J]. 材料导报, 2024, 38(19): 23070167-11.
FENG Guorui, YAO Xin, WANG Shuai, YAO Shun, HAN Yanna, HUANG Li, HOU Kai. Research Progress and Prospect of Clay Mineral Materials in the Field of Coal Mine Grouting. Materials Reports, 2024, 38(19): 23070167-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23070167  或          http://www.mater-rep.com/CN/Y2024/V38/I19/23070167
1 Kang H P, Xie H P, Ren S H, et al. Strategic Study of Chinese Academy of Engineering, 2022, 24(6), 12 (in Chinese).
康红普, 谢和平, 任世华, 等. 中国工程科学, 2022, 24(6), 12.
2 Qian M G, Xu J L, Wang J C. Journal of China Coal Society, 2018, 43(1), 1 (in Chinese).
钱鸣高, 许家林, 王家臣. 煤炭学报, 2018, 43(1), 1.
3 Liu F, Guo L F, Zhao L Z. Journal of China Coal Society, 2022, 47(1), 1 (in Chinese).
刘峰, 郭林峰, 赵路正. 煤炭学报, 2022, 47(1), 1.
4 Wang G F, Ren S H, Pang Y H, et al. Coal Science and Technology, 2021, 49(9), 1 (in Chinese).
王国法, 任世华, 庞义辉, 等. 煤炭科学技术, 2021, 49(9), 1.
5 He M C, Xu M. Chinese Journal of Rock Mechanics and Engineering, 2008(7), 1353 (in Chinese).
何满潮, 徐敏. 岩石力学与工程学报, 2008(7), 1353.
6 Qin C R, Lu W, Li J L. Journal of China Coal Society, 2019, 44(S1), 178 (in Chinese).
秦传睿, 陆伟, 李金亮. 煤炭学报, 2019, 44(S1), 178.
7 Marita L Allan. Cement and Concrete Research, 2000, 30(6), 937.
8 Zhang Y C. Cementation technology, China Coal Industry Publishing House, China, 2012 (in Chinese).
张永成. 注浆技术, 煤炭工业出版社, 2012.
9 Cheng L X, Kang H P, Jiang P F, et al. Journal of Mining & Safety Engineering, 2021, 38(2), 227 (in Chinese).
程利兴, 康红普, 姜鹏飞, 等. 采矿与安全工程学报, 2021, 38(2), 227.
10 Wang C F, Lu S Q, Li M J, et al. Environmental Science and Pollution Research International, 2021, 29(4), 6151.
11 Cai L X, Yang T, Tian J C, et al. Acta Sedimentologica Sinica, 2023, 41(6), 1859(in Chinese).
蔡来星, 杨田, 田景春, 等. 沉积学报, 2023, 41(6), 1859.
12 Brigatti M F, Galan E, Theng B K G. Developments in Clay Science, 2006, 1, 19.
13 Schoonheydt R A, Johnston C T. Developments in Clay Science, 2006, 1, 139.
14 Morrison Keith D, Misra Rajeev, Williams Lynda B. Scientific Reports, 2016, 6(1), 19043.
15 Huang W F. Mineral materials and their processing technology, Metallyrgical Industry Press, China, 2012 (in Chinese).
黄万抚. 矿物材料及其加工工艺, 冶金工业出版社, 2012.
16 Wang Y. Handbook for comprehensive utilization of mineral resources, Science Press, China, 2000 (in Chinese).
王瑜. 矿产资源综合利用手册, 科学出版社, 2000.
17 Wang J Z, Li J S, Liang B, et al. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2002, 35(3), 5 (in Chinese).
王继忠, 李金山, 梁波, 等. 南开大学学报:自然科学版, 2002, 35(3), 5.
18 Xie J J, Chen T H, Liu H B, et al. Journal of the Chinese Ceramic Society, 2018, 46(5), 9 (in Chinese).
谢晶晶, 陈天虎, 刘海波, 等. 硅酸盐学报, 2018, 46(5), 9.
19 Huff W D. Clays and Clay Minerals, 1990, 38(4), 448.
20 Nayak P S, Singh B K. Bulletin of Materials Science, 2007, 30(3),235.
21 Pierkes R, Schulze S E, Rickert J. In: Calcined clays for sustainable concrete, Martirena F, Favier A, Scrivener K, eds, Springer, Dordrecht, 2018, pp.366.
22 Hu Y, Diao L, Lai Z Y, et al. Construction and Building Materials, 2019, 224(C), 276.
23 Chen H X, Lu H Z, Zhou Y, et al. Polymer Degradation and Stability, 2012, 97 (3), 242.
24 Bucher R, Cyr M, Escadeillas G. Rilem Bookseries, 2015, 10, 27.
25 Mwiti M J, Thiong'o Joseph Karanja, Muthengia W J. Journal of Chemistry, 2018, 2018, 1.
26 Pan R, Wang Q, Jiang B, et al. Engineering Failure Analysis, 2017, 80, 218.
27 Gao Y B, Ren J. ACS Omega, 2022, 7(29), 25635.
28 Shi Z S, Liang B, Wang Y, et al. Journal of China Coal Society, 2017, 42(6), 1458 (in Chinese).
石占山, 梁冰, 王岩, 等. 煤炭学报, 2017, 42(6), 1458.
29 Guo D Y, Xia Q Y, Dong H L, et al. Earth Science Frontiers, 2022, 29(1), 470 (in Chinese).
郭东毅, 夏庆银, 董海良, 等. 地学前缘, 2022, 29(1), 470.
30 Ni G H, Lin B Q, Zhai C, et al. Journal of University of Science and Technology Beijing , 2013(5), 035 (in Chinese).
倪冠华, 林柏泉, 翟成, 等. 北京科技大学学报, 2013(5), 035.
31 Cheng J W, Zhao G, Liu Y T, et al. Coal Science and Technology, 2020, 48(2), 131 (in Chinese).
程健维, 赵刚, 刘雨涛, 等. 煤炭科学技术, 2020, 48(2), 131.
32 Zhang C, Fan F H, Li S G, et al. Coal Science and Technology, 2023, 51(4), 72 (in Chinese).
张超, 范富槐, 李树刚, 等. 煤炭科学技术, 2023, 51(4), 72.
33 Zhang C, Yan J, Li S G, et al. Journal of Mining & Safety Engineering, 2022, 39(5), 1033 (in Chinese).
张超, 延婧, 李树刚, 等. 采矿与安全工程学报, 2022, 39(5), 1033.
34 Feng P, Chang H L, Liu X, et al. Materials & Design, 2020, 186(C), 108320.
35 Wu M, Zhang Y S, Jia Y T, et al. Journal of Cleaner Production, 2019, 220, 677.
36 Niu X H, Feng G R, Han Y N, et al. Cement and Concrete Composites, 2022, 131, 104587.
37 Liu Z Y, Jiang S Q. Nonferrous Metals Engineering, 2022, 12(8), 159 (in Chinese).
刘占阳, 蒋帅旗. 有色金属工程, 2022, 12(8), 159.
38 Zhou Y, Wang G H, Yuan Y F. Ksce Journal of Civil Engineering, 2020, 24(9), 2742.
39 Zhang C, Fu J Y, Yang J S, et al. Construction and Building Materials, 2018, 187, 327.
40 Li X L, Guo X L, Sun G. Geofluids, 2021, 2021(5), 1.
41 Li W, Hua L M, Shi Y L, et al. Applied Clay Science, 2022, 229, 106674.
42 Liu M L, Hu Y, Lai Z Y, et al. Construction and Building Materials, 2020, 241(C), 118015.
43 Cai R J, He Z, Tang S W, et al. Cement and Concrete Composites, 2018, 92, 70.
44 Fan L D, Sun L, Yu Y Q, et al. Materials Reports, 2022, 36(6), 105 (in Chinese).
范利丹, 孙亮, 余永强, 等. 材料导报, 2022, 36(6), 105.
45 Zhang C, Yang J S, Ou X F, et al. Applied Clay Science, 2018, 163, 312.
46 Zhang W Q, Zhu X X, Xu S X, et al. Journal of Materials Research and Technology, 2019, 8(6), 5271.
47 Visakh P M, Semkin A O, Rezaev I A, et al. Construction and Building Materials, 2019, 227(C), 116673.
48 Huang Z C, Su Q, Huang J J, et al. Railway Engineering Science, 2022, 30(2), 204.
49 Yu T, Su H F, Zhang X D. IOP Conference Series: Earth and Environmental Science, 2021, 769(3), 032061.
50 Jiang D H, Liu Z R, Fu L J, et al. ACS Applied Materials & Interfaces, 2020, 12(8), 9872.
51 Qi Z N, Shang W Y. Theory and practice of polymer/layered silicate nanocomposites, Chemical Industry Press, China, 2002(in Chinese).
漆宗能, 尚文宇. 聚合物/层状硅酸盐纳米复合材料理论与实践, 化学工业出版社, 2002.
52 Li J J, Ou Y X. Flame retardant theory, Science Press, China, 2002 (in Chinese).
李建军, 欧育湘. 阻燃理论, 科学出版社, 2002.
53 Chen H, Zheng M, Sun H, et al. Materials Science and Engineering A, 2007, 445-446, 725.
54 Chen H, Zeng D, Xiao X, et al. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing, 2011, 528 (3), 1656.
55 Chen H, Lu H, Zhou Y, et al. Polymer Degradation and Stability, 2012, 97 (3), 242.
56 Yu G, Chen H, Wang W, et al. Polymer Composites, 2018, 39 (5), 1674.
57 Yang X, Liu W F, Liu J Y, et al. Journal of Applied Polymer Science, 2022, 139(43), e53057.
58 Mishra V K, Patel R H. Progress in Organic Coatings, 2020, 139(C), 105431.
59 He X G. Thermosetting Resin, 2020, 35(5), 36 (in Chinese).
何雄刚. 热固性树脂, 2020, 35(5), 36.
60 Cao Q. Fire Science and Technology, 2018, 37(1), 74 (in Chinese).
曹青. 消防科学与技术, 2018, 37(1), 74.
61 Chen Z X, Yi Y H. China Plastics Industry, 2022(7), 50 (in Chinese).
陈智兴, 易玉华. 塑料工业, 2022(7), 50.
62 Yu Y J, Li L, Duan X F. Engineering Plastics Application, 2019, 47(5), 48 (in Chinese).
于永建, 李玲, 段宪法. 工程塑料应用, 2019, 47(5), 48.
63 Bai J J, Chang B Z, Gao X. New Chemical Materials, 2017, 45(10), 63 (in Chinese).
白静静, 畅贝哲, 高雄. 化工新型材料, 2017, 45(10), 63.
[1] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[2] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[3] 冯炜森, 杨成鹏, 贾斐. 复合材料层压板疲劳损伤演化模型的综述与评估[J]. 材料导报, 2024, 38(9): 22100058-11.
[4] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[5] 陆奔, 李安敏, 杨树靖, 袁子豪, 惠佳琪. 磁性镓基液态金属复合材料的研究进展[J]. 材料导报, 2024, 38(8): 22090217-15.
[6] 张雨, 李瑜婧, 万里强, 黄发荣, 刘坐镇. 聚三唑树脂/氮化硼纳米片复合材料的制备与性能[J]. 材料导报, 2024, 38(8): 22100089-8.
[7] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[8] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[9] 郑孝源, 任志英, 吴乙万, 白鸿柏, 黄健萌, 谭桂斌. 金属橡胶-聚氨酯复合材料减振性能研究[J]. 材料导报, 2024, 38(6): 22050144-7.
[10] 马超, 解帅, 王永超, 冀志江, 吴子豪, 王静. 用于红外和雷达波隐身的水泥基复合材料[J]. 材料导报, 2024, 38(5): 23080165-9.
[11] 陈悦, 黄静, 朱子旭, 李华东. 面芯脱粘缺陷对复合材料夹芯圆柱壳屈曲特性影响分析[J]. 材料导报, 2024, 38(5): 23070044-6.
[12] 柯松, 陈卓坤, 艾诚, 李尧, 虢婷, 孙志平. 非晶合金薄膜的复合强韧化研究进展[J]. 材料导报, 2024, 38(5): 22090022-9.
[13] 佘欢, 时磊, 董安平. 钛基石墨烯复合材料的分散性、界面结构及力学性能[J]. 材料导报, 2024, 38(5): 23030202-8.
[14] 贾宝惠, 任鹏, 宋挺, 崔开心, 肖海建. 湿热环境下端径比对复合材料螺栓连接结构静力拉伸失效的影响[J]. 材料导报, 2024, 38(5): 22100282-7.
[15] 张倩玮, 陈意高, 崔红, 吴小军. SiC-ZrC复相超高温陶瓷改性C/C复合材料的研究进展[J]. 材料导报, 2024, 38(3): 22060154-10.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[3] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[4] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[5] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[6] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[7] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[8] Hong DONG,Xiaojun SUN,Xin ZHANG,Doudou YANG,Xueliang WANG,Fengming ZHANG. Synthesis and Drug Delivery Properties of Nano Metal-organic Framework ZIF-90[J]. Materials Reports, 2018, 32(2): 189 -192 .
[9] Quanjiang HUANG,Jun NAN,Sanfan WANG,Xinyi LI,Xin ZOU,Xuemin ZHANG. Benzenesulfonic Acid Betaine Surface Modified Cation Exchange Membrane[J]. Materials Reports, 2018, 32(2): 203 -206 .
[10] Guangzhi LIU,Wei LI,Youqing FEI. Study on the Preparation and Properties of Textile-ramie Fiber Reinforced In-situ Anionic Polyamide-6 Composites[J]. Materials Reports, 2018, 32(2): 213 -218 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed