Please wait a minute...
材料导报  2024, Vol. 38 Issue (14): 22100205-8    https://doi.org/10.11896/cldb.22100205
  无机非金属及其复合材料 |
氧化镍空穴材料在Ⅱ-Ⅵ族量子点电致发光器件中的应用进展
林坚1,*, 张松林1, 王悦安1, 孙浩1, 聂钰昌1, 陈德睢2,*
1 苏州科技大学材料科学与工程学院,江苏 苏州 215009
2 浙江大学化学系,浙江省激发态材料合成与应用重点实验室,杭州 310027
Development of Nickel Oxide Hole Materials in Ⅱ-Ⅵ Quantum Dot Electroluminescent Devices
LIN Jian1,*, ZHANG Songlin1, WANG Yuean1, SUN Hao1, NIE Yuchang1, CHEN Desui2,*
1 School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
2 Zhejiang Key Laboratory of Excited-State Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
下载:  全 文 ( PDF ) ( 4326KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 鉴于高效发光的Ⅱ-Ⅵ族量子点(Ⅱ-Ⅵ QD)电致发光(EL)器件已达到基本的商用需求,器件长期性能(寿命)受到了更多的重视。Ⅱ-Ⅵ QD EL器件中PEDOT:PSS材料易吸湿、易腐蚀ITO电极,这对器件寿命及商业应用潜力存在负面影响。采用高稳定性的NiO代替PEDOT:PSS可避免材料对器件稳定性产生影响。本文系统综述了NiO空穴材料在Ⅱ-Ⅵ QD EL器件中的研究进展,重点归纳了NiO薄膜的不同制备方法、掺杂和界面特性对器件性能的影响,最后对基于金属氧化物空穴功能层的Ⅱ-Ⅵ QD EL器件的研究趋势进行了展望,以期为制备在材料与器件层面稳定、高效的电致发光器件提供借鉴。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林坚
张松林
王悦安
孙浩
聂钰昌
陈德睢
关键词:  氧化镍  p型半导体  量子点  电致发光  掺杂  表面修饰    
Abstract: Highly efficient group Ⅱ-Ⅵ quantum dot(Ⅱ-Ⅵ QD)electroluminescence(EL)devices have been able to meet the basic commercial requirements, more attention has been paid to the long-term performance (lifetime) of the device. In the Ⅱ-Ⅵ QD EL devices, PEDOT:PSS is easy to absorb moisture and corrode ITO electrodes, which has a negative impact on device lifetime and commercial application potential. Replacing organic PEDOT:PSS with highly stable NiO could avoid the influence of materials on the stability of devices. This manuscript systematically reviews the research progress of NiO hole functional material in Ⅱ-Ⅵ QD EL devices, and focuses on the effects of different preparation methods, doping and interface characteristics of NiO films on the performance of devices. Finally, we made a prospect on the research trend of Ⅱ-Ⅵ QD EL devices based on the metal oxide hole functional layer, which may provide views for the preparation of stable and efficient EL devices at the material and device levels.
Key words:  nickel oxide    p-type semiconductor    quantum dots    electroluminescence    doping    surface modification
出版日期:  2024-07-25      发布日期:  2024-08-12
ZTFLH:  O649.2  
基金资助: 国家自然科学基金(22001187);中国博士后基金(2018M640548);江苏省高等学校自然科学研究项目(20KJB150032)
通讯作者:  * 林坚,苏州科技大学材料科学与工程学院副教授、硕士研究生导师。2008年中国计量大学应用物理专业本科毕业,2011年中国计量大学材料物理与化学专业硕士毕业并于光伏企业从事晶硅光伏技术研发,2012年于苏州大学吴涛教授课题组从事科研助理工作并读博,于2017年获得苏州大学无机化学博士学位。2019年浙江大学化学系金一政研究员课题组博士后出站并于苏州科技大学工作至今。目前主要从事晶态光电功能材料的合成及器件化研究。发表论文20余篇,包括J. Am. Chem. Soc.、Angew. Chem. Int. Ed.、Adv. Funct. Mater.、Nano Research、ACS Appl. Mater. Interfaces等。linjian@mail.usts.edu.cn
陈德睢,博士,助理研究员,2020年于浙江大学获得博士学位,主要从事氧化物半导体纳米晶的合成与溶液工艺光电器件研究。发表论文5篇,包括Adv. Mater.、Nano Lett.、Nano Research、 Chem. Eur. J.、J. Phys. Chem. C等。chendesui123@126.com   
引用本文:    
林坚, 张松林, 王悦安, 孙浩, 聂钰昌, 陈德睢. 氧化镍空穴材料在Ⅱ-Ⅵ族量子点电致发光器件中的应用进展[J]. 材料导报, 2024, 38(14): 22100205-8.
LIN Jian, ZHANG Songlin, WANG Yuean, SUN Hao, NIE Yuchang, CHEN Desui. Development of Nickel Oxide Hole Materials in Ⅱ-Ⅵ Quantum Dot Electroluminescent Devices. Materials Reports, 2024, 38(14): 22100205-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22100205  或          http://www.mater-rep.com/CN/Y2024/V38/I14/22100205
1 Dai X L, Zhang Z X, Jin Y Z, et al. Nature, 2014, 515(7525), 96.
2 Dai X L, Deng Y Z, Peng X P, et al. Advanced Materials, 2017, 29(14), 1607022.
3 Han C Y, Yang H. Journal of the Korean Ceramic Society, 2017, 54(6), 449.
4 Jin Y Z, Peng X G. Science China Chemistry, 2017, 60(10), 1324.
5 Yuan Q L, Wang T, Yu P L, et al. Organic Electronics, 2021, 90, 106086.
6 Chen Y H, Chen T, Xie Z X, et al. Materials Reports, 2023, 37(10), 21090296.
陈园虹, 陈婷, 谢志翔, 等. 材料导报, 2023, 37(10), 21090296.
7 Colvin V L, Schlamp M C, Alivisatos A P. Nature, 1994, 370(6488), 354.
8 Zhang Z X, Ye Y X, Pu C D, et al. Advanced Materials, 2018, 30(28), 1801387.
9 Cao W R, Xiang C Y, Yang Y X, et al. Nature Communications, 2018, 9(1), 2608.
10 Li X Y, Zhao Y B, Fan F J, et al. Nature Photonics, 2018, 12(3), 159.
11 Chen D S, Chen D, Dai X L, et al. Advanced Materials, 2020, 32(52), 2006178.
12 Liu D Q, Sheng C, Wang S Y, et al. Journal of Physical Chemistry Letters, 2020, 11(8), 3111.
13 Ye Y X, Zheng X R, Chen D S et al. Journal of Physical Chemistry Letters, 2020, 11(12), 4649.
14 Kim T,Kim K H, Kim S, et al. Nature, 2020, 586(7829), 385.
15 Pu C D,Dai X L, Shu Y F, et al. Nature Communications, 2020, 11(1), 937.
16 Lee T,Kim B J, Lee H, et al. Advanced Materials, 2022, 34(4), 2106276.
17 Deng Y Z,Peng F, Lu Y, et al. Nature Photonics, 2022, 16(7), 505.
18 Li Y F,Fan X, Shen C, et al. Advanced Functional Materials, 2022, 32(32), 2203641.
19 Shirasaki Y,Supran G J, Bawendi M G, et al. Nature Photonics, 2013, 7(1), 13.
20 Chen H T, Ding K, Fan L W,et al. Journal of Materials Chemistry C, 2022, 10(21), 8373.
21 Wang S J,Li C R, Xiang Y, et al. Nanoscale Advances, 2020, 2(5), 1967.
22 Hong G,Gan X M, Leonhardt C, et al. Advanced Materials, 2021, 33(9), 2005630.
23 Yang X Y,Mutlugun E, Zhao Y B, et al. Small, 2014, 10(2), 247.
24 Caruge J M,Halpert J E, Bulović V, et al. Nano Letters, 2006, 6(12), 2991.
25 Cao F,Wang H R, Shen P Y, et al. Advanced Functional Materials, 2017, 27(42), 1704278.
26 Kim H S, Kim C K. Molecular Crystals and Liquid Crystals, 2019, 678(1), 33.
27 Ji W Y, Liu S H, Zhang H, et al. ACS Photonics, 2017, 4(5), 1271.
28 Wang T,Zhu B Y, Wang S P, et al. ACS Applied Materials & Interfaces, 2018, 10(17), 14894.
29 Ji W Y, Shen H B, Zhang H,et al. Nanoscale, 2018, 10, 11103.
30 Sun Y Z, Chen W, Wu Y H, et al. Nanoscale, 2019, 11, 1021.
31 Yang X Y,Zhang Z H, Ding T, et al. Nano Energy, 2018, 46, 229.
32 Chen W, Wu Y Z, Yue Y F, et al. Science, 2015, 350, 944.
33 Ma F, Zhao Y, Li J H, et al. Journal of Energy Chemistry, 2021, 52, 393.
34 Zhang H, Cheng J Q, Lin F, et al. ACS Nano, 2016, 10(1), 1503.
35 Subbiah A S, Halder A, Ghosh S, et al. Journal of Physical Chemistry Letters, 2014, 5(10), 1748.
36 Kim J H, Liang P W, Williams S T, et al. Advanced Materials, 2015, 27(4), 695.
37 Jung J W, Chueh C C, Jen A K Y. Advanced Materials, 2015, 27(47), 7874.
38 Zuo L J,Chen Q, Marco N D, et al. Nano Letters, 2017, 17(1), 269.
39 Wang Q,Chueh C C, Zhao T, et al. ChemSusChem, 2017, 10(19), 3794.
40 Steirer K X, Chesin J P, Widjonarko N E, et al. Organic Electronics, 2010, 11(8), 1414.
41 Manders J R, Tsang S W, Hartel M J, et al. Advanced Functional Mate-rials, 2013, 23(23), 2993.
42 Bai S, Cao M T, Jin Y Z, et al. Advanced Energy Materials, 2014, 4(6), 1301460.
43 Liang X Y, Bai S, Wang X, et al. Chemical Society Reviews, 2017, 46(6), 1730.
44 Xu M P,Chen D S, Lin J, et al. Nano Research, 2022,15, 7453.
45 Du H,Ma L Y, Wang X, et al. Chemistry-A European Journal, 2021, 27(44), 11298.
46 Lin J,Dai X L, Liang X Y, et al. Advanced Functional Materials, 2020, 30(5), 1907265.
47 Jiang Y B, Jiang L, Yeung F S Y, et al. ACS Applied Materials & Interfaces, 2019, 11(12), 11119.
48 Zheng C X,Li F S, Zeng Q Y, et al. Thin Solid Films, 2019, 669, 387.
49 Zhang H,Wang S T, Sun X W, et al. Journal of Materials Chemistry C, 2017, 5(4), 817.
50 Fominykh K, Feckl J M, Sicklinger J, et al. Advanced Functional Mate-rials, 2014, 24(21), 3123.
51 Chen Z N, Su Q, Qin Z Y, et al. Nano Research, 2021, 14(1), 320.
52 Su Q, Sun Y Z, Zhang H, et al. Advanced Science, 2018, 5(10), 1800549.
53 Chen D S, Ma L Y, Chen Y H, et al. Nano Letters, 2023, 23(3), 1061.
54 Chen S, Cao W R, Liu T L, et al. Nature Communications, 2019, 10(1), 765.
55 Rhee S, Hahm D, Seok H J, et al. ACS Nano, 2021, 15(12), 20332.
56 Wang F Z,Wang Z Y, Zhu X D, et al. Small, 2021, 17(12), 2007363.
57 Wang L X,Pan J Y, Qian J P, et al. ACS Applied Electronic Materials, 2019, 1(10), 2096.
58 Kim H M, Kim J, Jang J. Nanoscale, 2018, 10(15), 7281.
59 Mashford B S, Nguyen T L, Wilson G J, et al. Journal of Materials Chemistry, 2010, 20(1), 167.
60 Caruge J M,Halpert J E, Wood V, et al. Nature Photonics, 2008, 2(4), 247.
61 Wood V,Panzer M J, Halpert J E, et al. ACS Nano, 2009, 3(11), 3581.
62 Chen W S, Yang S H, Tseng W C, et al. ACS Omega, 2021, 6(20), 13447.
63 Yu Y, Liang Y, Yong J, et al. Advanced Functional Materials, 2022, 32(3), 2106387.
64 Shendre S, Sharma V K, Dang C, et al. ACS Photonics, 2018, 5(2), 480.
65 Kim J, Hahm D, Bae W K, et al. Small, 2022, 18(29), 2202290.
66 Zhang J, Wang J T, Fu Y Y, et al. Journal of Materials Chemistry C, 2014, 2(39), 8295.
67 Jiang F, Choy W C H, Li X C, et al. Advanced Materials, 2015, 27(18), 2930.
68 Chen S C, Kuo T Y, Lin Y C, et al. Thin Solid Films, 2011, 519(15), 4944.
69 Liang X Y, Yi Q, Bai S, et al. Nano Letters, 2014, 14(6), 3117.
70 Ratcliff E L, Meyer J, Steirer K X, et al. Chemistry of Materials, 2011, 23(22), 4988.
71 Steirer K X, Ndione P F, Widjonarko N E, et al. Advanced Energy Materials, 2011, 1(5), 813.
72 Islam R, Chen G, Ramesh P, et al. ACS Applied Materials & Interfaces, 2017, 9(20), 17201.
73 Sharma A, Kippelen B, Hotchkiss P J, et al. Applied Physics Letters, 2008, 93(16), 163308.
74 Yip H L, Hau S K, Baek N S, et al. Advanced Materials, 2008, 20(12), 2376.
75 Paniagua S A,Giordano A J, Smith O L, et al. Chemical Reviews, 2016, 116(12), 7117.
76 Hotchkiss P J,Jones S C, Paniagua S A, et al. Accounts of Chemical Research, 2012, 45(3), 337.
77 Hietzschold S,Hillebrandt S, Ullrich F, et al. ACS Applied Materials & Interfaces, 2017, 9(45), 39821.
78 Peng W, Mao K T, Cai F C, et al. Science, 2023, 379, 683.
79 Li C W, Wang X M, Bi E B, et al. Science, 2023, 379, 690.
[1] 官春艳, 郑启泾, 万正环, 杨锦瑜. 溶胶-凝胶法制备Gd4Ga2O9: Dy3+白光发射荧光粉及其性能[J]. 材料导报, 2024, 38(8): 22100218-6.
[2] 唐江城, 赵先兴, 蔡润田, 杨城昊, 池波. Mn离子掺杂Pr0.5Ba0.5Fe0.9Mn0.1O3-δ钙钛矿SOEC阴极电解CO2性能研究[J]. 材料导报, 2024, 38(8): 23040185-6.
[3] 方瑜, 李靖, 孔维超, 周雪, 徐林, 孙冬梅, 唐亚文. 纳米碳片负载Mott-Schottky型Co/Co9S8异质结的原位合成及电催化性能研究[J]. 材料导报, 2024, 38(8): 23040234-7.
[4] 列维茨基·谢尔盖, 曹泽祥, 柯巴·亚历山大, 柯巴·玛丽亚. 激光辐射波长和脉冲寿命对碲化镉熔化阈值的影响[J]. 材料导报, 2024, 38(7): 22120127-6.
[5] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[6] 陈艳丽, 解自奇, 王梦真, 马子晗, 李姗姗, 颜文超, 李法强. 基于缺陷工程改性富锂层状材料的研究现状[J]. 材料导报, 2024, 38(4): 22070108-9.
[7] 程婷, 陈晨, 张晓, 温明月, 王磊. Mn掺杂Zigzag(8,0)型单壁碳纳米管吸附甲醛分子的密度泛函理论研究[J]. 材料导报, 2024, 38(4): 22040187-6.
[8] 贾宇盟, 史忠祥, 王晶, 李翔. Sm3+掺杂LaOF荧光粉的制备及光学性能[J]. 材料导报, 2024, 38(3): 22100249-7.
[9] 王雪怡, 王智远, 余伟, 周冰鑫, 徐榕, 杨兴东, 何辉超, 贾碧. 高压辅助溶胶-凝胶法制备La掺杂TiO2光催化剂及其可见光降解甲基橙研究[J]. 材料导报, 2024, 38(2): 22080236-5.
[10] 赵强, 李淑英, 郭智楠, 许琳, 赵一博, 吕靖, 尚建鹏, 郭永, 王俊丽. 氧化亚铜基光催化剂的制备及降解性能研究进展[J]. 材料导报, 2024, 38(14): 22110145-15.
[11] 李红梅, 孟建兵, 于浩洋, 董小娟, 周海安, 战胜杰, 唐友泉. ZnO纳米颗粒掺杂对镍钛合金表面微弧氧化膜层形貌及性能的影响[J]. 材料导报, 2024, 38(13): 22110123-7.
[12] 高华兴, 张红旗, 李璇. 准二维钙钛矿中结晶调控与低阈值微纳激光器[J]. 材料导报, 2024, 38(12): 22110309-5.
[13] 于巧玲, 刘成宝, 金涛, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. CuS/CQDs/g-C3N4复合材料的合成及光催化性能[J]. 材料导报, 2024, 38(11): 22090279-7.
[14] 吴强, 李正伟, 周建华, 张冬梅, 党锋, 刘文平, 苗蕾. 壳聚糖衍生碳包覆纳米硅复合材料锂离子电池性能研究[J]. 材料导报, 2024, 38(10): 23010052-6.
[15] 何敬敬, 王旭, 牛强. 钙钛矿量子点在光伏电池中的应用进展[J]. 材料导报, 2024, 38(10): 22110228-13.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed