Please wait a minute...
材料导报  2024, Vol. 38 Issue (14): 22110145-15    https://doi.org/10.11896/cldb.22110145
  无机非金属及其复合材料 |
氧化亚铜基光催化剂的制备及降解性能研究进展
赵强1,2, 李淑英1,3, 郭智楠1, 许琳1, 赵一博1, 吕靖1,3, 尚建鹏1,2, 郭永1,2, 王俊丽1,3,*
1 山西大同大学化学与化工学院, 山西 大同 037009
2 山西大同大学山西省清洁能源材料联合实验室,山西 大同 037009
3 煤基生态碳汇技术教育部工程研究中心,山西 大同 037009
Progress in the Preparation and Degradation Performance of Cuprous Oxide-based Photocatalysts
ZHAO Qiang1,2, LI Shuying1,3, GUO Zhinan1, XU Lin1, ZHAO Yibo1, LYU Jing1,3, SHANG Jianpeng1,2, GUO Yong1,2, WANG Junli1,3,*
1 School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, Shanxi, China
2 Shanxi Province Union Laboratory of Clean Energy Materials, Shanxi Datong University, Datong 037009, Shanxi, China
3 Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Datong 037009, Shanxi, China
下载:  全 文 ( PDF ) ( 21850KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 Cu2O是一种p型半导体,在光催化领域有着广阔的应用前景。研究者通过调控Cu2O形貌和尺寸、构建异质结结构、设计复合材料增大比表面积和导电性等手段,提高其光利用率,降低了光生电子-空穴对复合率,从而提高了Cu2O 的光催化活性和光稳定性,促进了其在光催化降解染料领域的应用。本文重点综述了通过元素掺杂、半导体异质结构建及与其他材料复合的途径增强Cu2O光催化性能的方法,归纳了其在光催化降解有机污染物方面的应用及异质结增强机理,指出了目前研究存在的短板, 并对氧化亚铜基复合光催化的发展及应用前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵强
李淑英
郭智楠
许琳
赵一博
吕靖
尚建鹏
郭永
王俊丽
关键词:  氧化亚铜  掺杂  半导体  异质结  光降解性能    
Abstract: Cu2O is a kind of p-type semiconductor, which has a wide application prospect in the field of photocatalysis. By adjusting the morphology and size of Cu2O, constructing the heterojunction structure, designing the composite material to increase the specific surface area and electrical conductivity, the light utilization rate of Cu2O was improved and the photogenerated electron-hole pair recombination rate was reduced, thus improving the photocatalytic activity and photostability of Cu2O, and promoting its application in the field of photocatalytic degradation of pollutant. In this paper, the methods to enhance the photocatalytic performance of Cu2O, including metal doping, semiconductor heterostructure construction and composites synthesis, were reviewed. Its application in photocatalytic degradation of organic pollutants and the enhancement mechanism of heterojunction were summarized. In addition, the shortcomings of current research were pointed out. The development and application prospect of cuprous oxide based photocatalysis were also prospected.
Key words:  cuprous oxide    doping    semiconductor    heterojunction    photodegradation performance
出版日期:  2024-07-25      发布日期:  2024-08-12
ZTFLH:  O643  
基金资助: 国家自然科学基金(21908135);山西省自然科学基金 (201901D111308;201901D211435;201801D221057);山西省留学回国人员科技活动项目择优资助(2019-20;20240027); 山西大同大学博士科研启动基金(2018-B-01; 2020-B-02);山西大同大学研究生创新基金(21CX22;22CX17);山西省大学生创新创业训练计划项目(20220807;2016172)
通讯作者:  * 王俊丽,山西大同大学化学与化工学院正高级实验师、硕士研究生导师。2005年太原师范学院化学系化学教育专业本科毕业,2008年太原理工大学物理化学专业硕士毕业后到山西大同大学工作至今,2017年太原理工大学化学工程与技术专业博士毕业。目前主要从事低阶煤及生物质热解和光催化降解等方面的研究工作。发表论文20余篇,包括Energy Conversion and Management、Fuel、Energy &Fuels、《燃料化学学报》等。出版专著1部。wangjunlitylg@126.com   
作者简介:  赵强,山西大同大学化学与化工学院教授、硕士研究生导师。2003年雁北师范学院化学系化学教育专业本科毕业,2007年太原理工大学高分子化学与物理专业硕士毕业后到山西大同大学工作至今,2021年日本弘前大学安全系统工程专业博士毕业。目前主要从事光催化等方面的研究工作。发表论文20余篇,包括Separation and Purification Technology、ACS Applied Nano Materials、Journal of Photochemistry & Photobiology A: Chemistry等。出版专著1部。
引用本文:    
赵强, 李淑英, 郭智楠, 许琳, 赵一博, 吕靖, 尚建鹏, 郭永, 王俊丽. 氧化亚铜基光催化剂的制备及降解性能研究进展[J]. 材料导报, 2024, 38(14): 22110145-15.
ZHAO Qiang, LI Shuying, GUO Zhinan, XU Lin, ZHAO Yibo, LYU Jing, SHANG Jianpeng, GUO Yong, WANG Junli. Progress in the Preparation and Degradation Performance of Cuprous Oxide-based Photocatalysts. Materials Reports, 2024, 38(14): 22110145-15.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22110145  或          http://www.mater-rep.com/CN/Y2024/V38/I14/22110145
1 Meng X, Li Z, Chen J,et al. Applied Surface Science, 2018, 433, 76.
2 Yu Z, Li F, Yang Q, et al. ACS Sustainable Chemistry & Engineering, 2017, 5(9), 7840.
3 Yoon S, Kim M, Kim I S,et al. Journal of Materials Chemistry A, 2014, 2, 11621.
4 Wei Z, Xin T, Xiao W,et al. Chemical Engineering Journal, 2019, 361, 1173.
5 Zhong S, Lv C, Shen M,et al. Journal of Materials Science: Materials in Electronics, 2019, 30(4), 4152.
6 Dadigala R, Bandi R, Gangapuram B R, et al. Nanoscale Advances, 2019, 1(1), 322.
7 Li R, Zhang F, Wang D,et al. Nature Communications, 2013, 4, 1432.
8 Zhang J, Ma H, Liu Z. Applied Catalysis B: Environmental, 2017, 201, 84.
9 Cai T, Wang L, Liu Y, et al. Applied Catalysis B: Environmental, 2018, 239, 545.
10 Fang H, Pan Y, Yin M, et al. Journal of Solid State Chemistry, 2019, 280, 120981.
11 Ng C H B, Fan W Y. Journal of Physical Chemistry B, 2006, 110(42), 20801.
12 Zhang J T, Liu J F, Peng Q,et al. Chemistry of Materials, 2006, 18(4), 867.
13 Zhang H, Zhu Q, Zhang Y,et al. Advanced Functional Materials, 2007, 17(15), 2766.
14 Zhong J H, Li G R, Wang Z L,et al. Inorganic Chemistry, 2011, 50(3), 757.
15 Kuo C H, Yang Y C, Gwo S,et al. Journal of the American Chemical Society, 2011, 133(4), 1052.
16 Xiang J Y, Wang X L, Xia X H,et al. Electrochimica Acta, 2010, 55(17), 4921.
17 White B, Yin M, Hall A,et al. Nano Letters, 2006, 6(9), 2095.
18 Leng M, Liu M, Zhang Y,et al. Journal of the American Chemical Society, 2010, 132(48), 17084.
19 Paracchino A, Laporte V, Sivula K,et al. Nature Materials, 2011, 10(6), 456.
20 Hara M, Kondo T, Komoda M, et al. Chemical Communications, 1998, 3, 357.
21 Roos A, Karlsson B. Solar Energy Materials, 1983, 7(4), 467.
22 Gou L, Murphy C J. Nano Letters, 2003, 3(2), 231.
23 Kim M H, Lim B, Lee E P, et al. Journal of Materials Chemistry, 2008, 18(34), 4069.
24 Kuo C H, Huang M H. Nano Today, 2010, 5(2), 106.
25 Chang I C, Chen P C, Tsai M C,et al. Crystengcomm, 2013, 15(13), 2363.
26 Nikam A V, Arulkashmir A, Krishnamoorthy K, et al. Crystal Growth & Design, 2014, 14(9), 4329.
27 Cao Y Y, Xu Y Y, Hao H Y, et al. Materials Letters, 2014, 114, 88.
28 Kumar S, Parlett C M A, Isaacs M A,et al. Applied Catalysis B: Environmental, 2016, 189, 226.
29 Kuo C H, Chen C H, Huang M H. Advanced Functional Materials, 2007, 17(18), 3773.
30 Karthikeyan S, Kumar S, Durndell L J,et al. Chemcatchem, 2018, 10(16), 3554.
31 Xu H L, Wang W Z, Zhu W. Journal of Physical Chemistry B, 2006, 110(28), 13829.
32 Siegfried M J, Choi K S. Angewandte Chemie International Edition, 2005, 44(21), 3218.
33 Kuo C H, Huang M H. Journal of Physical Chemistry C, 2008, 112(47), 18355.
34 Pang H, Gao F, Lu Q Y. Crystengcomm, 2010, 12(2), 406.
35 Zhang Y, Deng B, Zhang T, et al. Journal of Physical Chemistry C, 2010, 114(11), 5073.
36 Liang X, Gao L, Yang S,et al. Advanced Materials, 2009, 21(20), 2068.
37 Tan Y, Xue X, Peng Q, et al. Nano Letters, 2007, 7(12), 3723.
38 Wang W Z, Wang G H, Wang X S, et al. Advanced Materials, 2002, 14(1), 67.
39 Guan L, Pang H, Wang J, et al. Chemical Communications, 2010, 46(37), 7022.
40 Musselman K P, Mulholland G J, Robinson A P,et al. Advanced Mate-rials, 2008, 20(23), 4470.
41 Ju H K, Lee J K, Lee J, et al. Current Applied Physics, 2012, 12(1), 60.
42 Haynes K M, Perry C M, Rivas M, et al. ACS Applied Materials & Interfaces, 2015, 7(1), 830.
43 Zhang Z, Che H, Wang Y, et al. Industrial & Engineering Chemistry Research, 2012, 51(3), 1264.
44 Sun S, Kong C, You H,et al. Crystengcomm, 2012, 14(1), 40.
45 Chen W, Fan Z, Lai Z. Journal of Materials Chemistry A, 2013, 1(44), 13862.
46 Ai Z, Zhang L, Lee S, et al. Journal of Physical Chemistry C, 2009, 113(49), 20896.
47 Zhang W, Yang X, Zhu Q,et al. Industrial & Engineering Chemistry Research, 2014, 53(42), 16316.
48 Lee C, Shin K, Lee Y J,et al. Catalysis Today, 2018, 303, 313.
49 Xiong J, Li Z, Chen J, et al. ACS Applied Materials & Interfaces, 2014, 6(18), 15716.
50 Hu Z, Mi Y, Ji Y,et al. Nanoscale, 2019, 11(35), 16445.
51 Sharma K, Maiti K, Kim N H,et al. Composites Part B: Engineering, 2018, 138, 35.
52 Wei Q, Wang Y, Qin H, et al. Applied Catalysis B: Environmental, 2018, 227, 132.
53 Liu X W. Langmuir, 2011, 27(15), 9100.
54 Zhu H, Du M, Yu D,et al. Journal of Materials Chemistry A, 2013, 1(3), 919.
55 Mahmoud M A, Qian W, Mostafa A. Nano Letters, 2011, 11(8), 3285.
56 Wang W C, Lyu L M, Huang M H. Chemistry of Materials, 2011, 23(10), 2677.
57 Miller E B, Zahran E M, Knecht M R,et al. Applied Catalysis B: Environmental, 2017, 213, 147.
58 Yu X, Zhang J, Zhang J,et al. Chemical Engineering Journal, 2019, 374, 316.
59 Heng B, Xiao T, Tao W, et al. Crystal Growth & Design, 2012, 12(8), 3998.
60 Han G F, Du W H, An B L,et al. Scripta Materialia, 2018, 153, 104.
61 Lu Y M, Chen C Y, Lin M H. Thin Solid Films, 2005, 480, 482.
62 Li H J, Pu C Y, Ma C Y, et al. Thin Solid Films, 2011, 520(1), 212.
63 Yan C, Luo W, Yuan H, et al. Applied Catalysis B: Environmental, 2022, 308, 121191.
64 Qiang Y, Wang X, Yang Y, et al. Journal of Functional Materials, 2020, 51(2), 2193(in Chinese).
强义凯, 王新智, 杨迎春, 等. 功能材料, 2020, 51(2), 2193.
65 Bai Q, Wang W, Zhang Q, et al. Journal of Applied Physics, 2012, 111(2), 23709.
66 Wen S, Zou Y, Hu F, et al. Journal of Synthetic Crystals, 2015, 44(11), 3361(in Chinese).
文思逸, 邹苑庄, 胡飞, 等. 人工晶体学报, 2015, 44(11), 3361.
67 Liu X, Yuan B, Xia Y, et al. Journal of Functional Materials, 2019, 50(10), 10047(in Chinese).
刘晓波, 袁斌霞, 夏阳春, 等. 功能材料, 2019, 50(10), 10047.
68 Jiang T, Xie T, Chen L,et al. Nanoscale, 2013, 5(7), 2938.
69 Deo M, Shinde D, Yengantiwar A,et al. Journal Materials Chemistry, 2012, 22(33), 17055.
70 Zou X, Fan H, Tian Y,et al. Crystengcomm, 2014, 16(6), 1149.
71 Kandjani A E, Sabri Y M, Periasamy S R,et al. Langmuir, 2015, 31(39), 10922.
72 Wu S C, Tan C S, Huang M H. Advanced Functional Materials, 2017, 27(9), 1604635.
73 Ren S, Zhao G, Wang Y,et al. Nanotechnology, 2015, 26(12), 125403.
74 Hou Y, Li X Y, Zhao Q D,et al. Applied Physics Letters, 2009, 95(9), 093108.
75 Huang L, Peng F, Wang H J,et al. Catalysis Communications, 2009, 10(14), 1839.
76 Wang M, Sun L, Lin Z,et al. Energy & Environmental Science, 2013, 6(4), 1211.
77 Liu L, Yang W, Sun W,et al. ACS Applied Materials & Interfaces, 2015, 7(3), 1465.
78 Liu L, Gu X, Sun C,et al. Nanoscale, 2012, 4(20), 6351.
79 Yang L, Luo S, Li Y,et al. Environmental Science & Technology, 2010, 44(19), 7641.
80 Fu J, Cao S, Yu J. Journal of Materiomics, 2015, 1(2), 124.
81 Jiang D, Xue J, Wu L,et al. Applied Catalysis B: Environmental, 2017, 211, 199.
82 Yu H, Yu J, Liu S,et al. Chemistry of Materials, 2007, 19(17), 4327.
83 Liu X, Chen J, Liu P, et al. Applied Catalysis A: General, 2016, 521, 34.
84 Chen J, Liu X, Zhang H,et al. Materials Letters, 2016, 182, 47.
85 Yurddaskal M, Dikici T, Celik E. Ceramics International, 2016, 42(15), 17749.
86 Wang P, Wang J, Wang X,et al. Current Nanoscience, 2015, 11(4), 462.
87 Ma H, Liu Y, Fu Y,et al. Australian Journal of Chemistry, 2014, 67(5), 749.
88 Li H, Su Z, Hu S,et al. Applied Catalysis B: Environmental, 2017, 207, 134.
89 Lakhera S K, Watts A, Hafeez H Y,et al. Catalysis Today, 2018, 300, 58.
90 Tian Q, Wu W, Sun L,et al. ACS Applied Materials & Interfaces, 2014, 6(15),13088.
91 Li F, Dong B. Ceramics International, 2017, 43(17), 16007.
92 Luo Y, Huang Q, Li B,et al. Applied Surface Science, 2015, 357, 1072.
93 Shen H, Wang J, Jiang J,et al. Chemical Engineering Journal, 2017, 313, 508.
94 Li Z P, Wen Y Q, Shang J P,et al. Chinese Chemical Letters, 2014, 25(2), 287.
95 Bi Y, Ouyang S, Umezawa N, et al. Journal of American Chemical Society, 2011, 133(17), 6490.
96 Li Z, Dai K, Zhang J,et al. Materials Letters, 2017, 206, 48.
97 Hou G, Zeng X, Gao S. Materials Letters, 2019, 238, 116.
98 Liu Y, Chu Y, Zhuo Y, et al. Advanced Functional Materials, 2007, 17(6), 933.
99 Hu X, Zhou X, Wang R,et al. Applied Catalysis B: Environmental, 2014, 154, 44.
100 He J, Shao D W, Zheng L C,et al. Applied Catalysis B: Environmental, 2017, 203, 917.
101 Xu Z K, Han L, Hu P,et al. Catalysis Science & Technology, 2014, 4(10), 3615.
102 Kim T G, Yeon D H, Kim T, et al. Applied Physics Letters, 2013, 103, 043904.
103 Lou S, Wang W, Wang L,et al. Journal of Alloys and Compounds, 2018, 781, 508.
104 He R, Cao S W, Zhou P,et al. Chinese Journal of Catalysis, 2014, 35(7), 989.
105 García-Pérez U M, Martínez-de la Cruz A, Sepúlveda-Guzmán S,et al. Ceramics International, 2014, 40(3), 4631.
106 Wang W, Huang X, Wu S,et al. Applied Catalysis B: Environmental, 2013, 134, 293.
107 Deng Y, Tang L, Zeng G,et al. Environmental Science: Nano, 2017, 4(7), 1494.
108 Chen W, Liu T Y, Huang T,et al. Applied Surface Science, 2015, 355, 379.
109 Liu L, Ding L, Liu Y, et al. Applied Surface Science, 2016, 364, 505.
110 Li J, Yuan H, Zhu Z. Journal of Molecular Catalysis A: Chemical, 2015, 410, 133.
111 Xia Y, He Z, Yang W,et al. Materials Research Express, 2018, 5(2), 025504.
112 Cui W, An W, Liu L,et al. Journal of Hazardous Materials, 2014, 280, 417.
113 Tian Y, Chang B, Fu J,et al. Journal of Solid State Chemistry, 2014, 212, 1.
114 Li D, Zan J, Wu L,et al. Industrial & Engineering Chemistry Research, 2019, 58(10), 4000.
115 Liu L, Qi Y, Hu J,et al. Materials Letters, 2015, 158, 278.
116 Yan X, Xu R, Guo J J,et al. Materials Research Bulletin, 2017, 96, 18.
117 Liang S, Zhou Y, Cai Z, et al. Applied Organometallic Chemistry, 2016, 30(11), 932.
118 Zuo S, Chen Y, Liu W,et al. Ceramics International, 2017, 43(3), 3324.
119 Liu Y, Dong H, Jia H,et al. Journal of Alloys and Compounds, 2015, 644, 159.
120 Tian L, Rui Y, Sun K,et al. Nanomaterials, 2018, 8(1), 33.
121 Yue Y, Zhang P, Wang W, et al. Journal of Hazardous Materials, 2020, 384, 121302.
122 He Z, Xia Y, Tang B,et al. Materials Research Express, 2017, 4(9), 095501.
123 Xia Y, He Z, Hu K,et al. Journal of Alloys and Compounds, 2018, 753, 356.
124 Zhou K, Shi Y, Jiang S,et al. Materials Letters, 2013, 98, 213.
125 Yang L, Chu D, Wang L,et al. Ceramics International, 2016, 42(2), 2502.
126 Zhao Q, Wang J, Li Z,et al. Ceramics International, 2016, 42(11), 13273.
127 Tu K, Wang Q, Lu A,et al. The Journal of Physical Chemistry C, 2014, 118(13), 7202.
128 Nie J, Li C, Jin Z,et al. Carbohydrate Polymers, 2019, 223, 115101.
129 Abulizi A, Yang G, Zhu J J. Ultrasonics-Sonochemistry, 2014, 21(1), 129.
130 Pu Y C, Chou H Y, Kuo W S,et al. Applied Catalysis B: Environmental, 2017, 204, 21.
131 Zou W, Zhang L, Liu L,et al. Applied Catalysis B: Environmental, 2016, 181, 495.
132 Zhang W, Li X, Yang Z,et al. Nanotechnology, 2016, 27(26), 265703.
133 Cai J, Liu W, Li Z. Applied Surface Science, 2015, 358, 146.
[1] 官春艳, 郑启泾, 万正环, 杨锦瑜. 溶胶-凝胶法制备Gd4Ga2O9: Dy3+白光发射荧光粉及其性能[J]. 材料导报, 2024, 38(8): 22100218-6.
[2] 唐江城, 赵先兴, 蔡润田, 杨城昊, 池波. Mn离子掺杂Pr0.5Ba0.5Fe0.9Mn0.1O3-δ钙钛矿SOEC阴极电解CO2性能研究[J]. 材料导报, 2024, 38(8): 23040185-6.
[3] 方瑜, 李靖, 孔维超, 周雪, 徐林, 孙冬梅, 唐亚文. 纳米碳片负载Mott-Schottky型Co/Co9S8异质结的原位合成及电催化性能研究[J]. 材料导报, 2024, 38(8): 23040234-7.
[4] 列维茨基·谢尔盖, 曹泽祥, 柯巴·亚历山大, 柯巴·玛丽亚. 激光辐射波长和脉冲寿命对碲化镉熔化阈值的影响[J]. 材料导报, 2024, 38(7): 22120127-6.
[5] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[6] 王海涛, 施宝旭, 赵晓旭, 常娜. 高效降解盐酸四环素的CdS/BiOCl复合光催化剂的制备及性能[J]. 材料导报, 2024, 38(6): 22060180-8.
[7] 陈艳丽, 解自奇, 王梦真, 马子晗, 李姗姗, 颜文超, 李法强. 基于缺陷工程改性富锂层状材料的研究现状[J]. 材料导报, 2024, 38(4): 22070108-9.
[8] 程婷, 陈晨, 张晓, 温明月, 王磊. Mn掺杂Zigzag(8,0)型单壁碳纳米管吸附甲醛分子的密度泛函理论研究[J]. 材料导报, 2024, 38(4): 22040187-6.
[9] 贾宇盟, 史忠祥, 王晶, 李翔. Sm3+掺杂LaOF荧光粉的制备及光学性能[J]. 材料导报, 2024, 38(3): 22100249-7.
[10] 王雪怡, 王智远, 余伟, 周冰鑫, 徐榕, 杨兴东, 何辉超, 贾碧. 高压辅助溶胶-凝胶法制备La掺杂TiO2光催化剂及其可见光降解甲基橙研究[J]. 材料导报, 2024, 38(2): 22080236-5.
[11] 林坚, 张松林, 王悦安, 孙浩, 聂钰昌, 陈德睢. 氧化镍空穴材料在Ⅱ-Ⅵ族量子点电致发光器件中的应用进展[J]. 材料导报, 2024, 38(14): 22100205-8.
[12] 许丹, 于彩莲, 李芬, 杨莹, 李博琳, 芦柳, 蔺宇晨. CO2还原光催化材料研究进展[J]. 材料导报, 2024, 38(14): 23030280-8.
[13] 李红梅, 孟建兵, 于浩洋, 董小娟, 周海安, 战胜杰, 唐友泉. ZnO纳米颗粒掺杂对镍钛合金表面微弧氧化膜层形貌及性能的影响[J]. 材料导报, 2024, 38(13): 22110123-7.
[14] 高华兴, 张红旗, 李璇. 准二维钙钛矿中结晶调控与低阈值微纳激光器[J]. 材料导报, 2024, 38(12): 22110309-5.
[15] 于巧玲, 刘成宝, 金涛, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. CuS/CQDs/g-C3N4复合材料的合成及光催化性能[J]. 材料导报, 2024, 38(11): 22090279-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed