Please wait a minute...
材料导报  2023, Vol. 37 Issue (12): 22020186-5    https://doi.org/10.11896/cldb.22020186
  高分子与聚合物基复合材料 |
沟槽型微纳复合结构表面的制备与减阻性能研究
张春来1, 张丽霞2, 王潇1, 吴银涛1, 王波1,*
1 北京工业大学材料与制造学部,北京 100124
2 航天科工防御技术研究试验中心三室,北京 100854
Preparation and Drag Reduction Performance of Grooved Micro-Nano Composite Structure Surface
ZHANG Chunlai1, ZHANG Lixia2, WANG Xiao1, WU Yintao1, WANG Bo1,*
1 Materials and Manufacturing Department, Beijing University of Technology, Beijing 100124, China
2 Lab.3, Defense Research and Test Center, China Aerospace Science & Industry Corp., Beijing 100854, China
下载:  全 文 ( PDF ) ( 7200KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 沟槽微结构减阻与疏水表面减阻是两种有效的水下减阻技术。将两种典型的减阻技术进行联合协同,在聚对苯二甲酸乙二醇酯-1,4-环己烷二甲醇酯(PETG)基底表面采用激光微刻方法构筑微米级沟槽结构,采用二步喷涂法先后在微沟槽表面覆盖环氧树脂层与改性的纳米SiO2颗粒,从而实现沟槽型微纳复合结构表面的制备。利用接触角测量仪、体视显微镜、拖曳式摩擦阻力测试设备对复合结构表面的润湿性、水下气膜状态及水下减阻性能进行表征。结果表明,沟槽型微纳复合结构表面为超疏水表面,液滴在该表面处于“Cassie-Baxter”润湿状态;在水下,复合结构表面具有束缚大尺寸气膜的能力,气膜驻留于表面沟槽之中且促使了表面的水下减阻效果的产生;对比单纯的沟槽微结构表面与喷涂SiO2颗粒光滑表面,制得的沟槽型复合结构表面在沿垂直于沟槽方向运动时最大减阻率可达20.82%,同时表面气膜的稳定性也最佳。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张春来
张丽霞
王潇
吴银涛
王波
关键词:  减阻  气膜  表面结构  表面润湿    
Abstract: Grooved microstructure drag reduction and hydrophobic surface drag reduction are two effective underwater drag reduction techniques. The two typical drag reduction methods were combined and synergized. After the micro-scale trench structure was constructed by laser micro-engraving technology on the surface of the PETG substrate, the epoxy resin layer and the modified nano-scale SiO2 particles were successively covered on the surface of the micro-groove by a two-step spraying method, so as to realize the preparation of the surface of grooved micro-nano composite structure. The surface wettability, underwater gas film state and underwater drag reduction performance of the prepared surfaces were analyzed by contact angle measuring instrument, stereo microscope and dragging friction resistance testing equipment. Results showed that the surface of the grooved micro-nano composite structure is a superhydrophobic surface, and the surface droplets are in the ‘Cassie-Baxter’ wet state. When underwater, the surface of the composite structure has the ability to bind a large-scale gas film, and the gas film resides in the surface grooves and promotes the underwater drag reduction effect of the surface. Comparing the surface of a simple groove microstructure with a smooth surface coated with SiO2 particles, the maximum drag reduction rate can reach 20.82% when the surface moves along the diction prependicular to the grooves. Meanwhile, the stability of surface air film is also optimal.
Key words:  drag reduction    gas film    surface structure    surface wetting
出版日期:  2023-06-25      发布日期:  2023-06-20
ZTFLH:  TQ127  
基金资助: 国家自然科学基金(51571003)
通讯作者:  * 王波,北京工业大学材料与制造学部教授、博士研究生导师。1997年毕业于吉林大学超硬材料国家重点实验室,同年进入北京工业大学任教,目前主要从事固体表面改性、特殊浸润性材料与功能薄膜材料等方面的研究工作。工作期间发表论文100余篇,其中SCI收录60余篇,申请发明专利20多项。wangbo@ bjut.edu.cn   
作者简介:  张春来,工学硕士。2019年6月于烟台大学获得工学学士学位,现就读于北京工业大学材料与制造学部材料科学与工程专业,在王波教授的指导下进行研究,目前主要研究领域为固体表面微结构改性与水下减阻。
引用本文:    
张春来, 张丽霞, 王潇, 吴银涛, 王波. 沟槽型微纳复合结构表面的制备与减阻性能研究[J]. 材料导报, 2023, 37(12): 22020186-5.
ZHANG Chunlai, ZHANG Lixia, WANG Xiao, WU Yintao, WANG Bo. Preparation and Drag Reduction Performance of Grooved Micro-Nano Composite Structure Surface. Materials Reports, 2023, 37(12): 22020186-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22020186  或          http://www.mater-rep.com/CN/Y2023/V37/I12/22020186
1 Luo W, Yu B, Xiao D, et al. Materials, 2018, 11(5), 813.
2 Guo R S, Wei Q B, Wu Y, et al. Tribology, 2015, 35(1), 23 (in Chinese).
郭瑞生, 魏强兵, 吴杨, 等. 摩擦学学报, 2015, 35(1), 23.
3 Mo M T, Zhao W J, Chen Z F, et al. Tribology, 2015, 35(4), 505 (in Chinese).
莫梦婷, 赵文杰, 陈子飞, 等. 摩擦学学报, 2015, 35(4), 505.
4 Perlin M, Dowling D R, Ceccio S L. Journal of Fluids Engineering, Transactions of the ASME, 2016, 138(9), 091104.
5 Stephani K A, Goldstein O D B. Journal of Fluids Engineering, Transactions of the ASME, 2010, 132(4), 041303.
6 Barbier C, Jenner E, D’urso B. In:ASME International Mechanical Engineering Congress and Exposition. Houston, 2012, pp. 199.
7 Martell M B, Perot J B, Rothstein J P. Journal of Fluid Mechanics, 2009, 620, 31.
8 Liu L X, Wang K J, Wang X W, et al. Journal of Experiments in Fluid Mechanics, 2021, 35(1), 117 (in Chinese).
刘丽霞, 王康俊, 王鑫蔚, 等. 实验流体力学, 2021, 35(1), 117.
9 Wu T, Chen W, Zhao I, et al. Ocean Engineering, 2020, 218, 107902.
10 Liravi M, Pakzad H, Moosavi A, et al. Progress in Organic Coatings, 2020, 140, 105537.
11 Hu H B, Huang S H, Song B W, et al. Journal of Ship Mechanics, 2015, 19(8), 1011 (in Chinese).
胡海豹, 黄苏和, 宋保维, 等. 船舶力学, 2015, 19(8), 1011.
12 Wang X N, Geng X G, Zang D Y. Acta Physica, 2013, 62(5), 054701.
13 Li S, Jiang N, Yang S, et al. Chinese Physics B, 2018, 27(10), 104701.
14 Taghvaei E, Moosavi A, Nouri-borujerdi A, et al. Energy, 2017, 125, 1.
15 Jagdish B N, Brandon T Z X, Kwee T J, et al. Journal of Ship Research, 2014, 58(1), 30
16 Lee C, Kim C J. Physical Review Letters, 2011, 106(1), 14502.
17 Wang B, Wang J, Dou Z, et al. Ocean Engineering, 2014, 79, 58.
18 Feng J X, Hu H B, Lu B J, et al. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1), 24 (in Chinese).
冯家兴, 胡海豹, 卢丙举, 等. 力学学报, 2020, 52(1), 24.
[1] 白清顺, 郭万民, 窦昱昊, 郭永博, 张飞虎. 石墨烯与不锈钢微结构表面黏附行为的分子动力学模拟研究[J]. 材料导报, 2023, 37(1): 21050249-6.
[2] 汪超翔, 郭冲霄, 刘 悦, 范同祥. 采用固体碳源制备石墨烯薄膜研究进展[J]. 材料导报, 2022, 36(16): 21030237-9.
[3] 张文博, 石建丽, 马建中, 卫林峰, 范倩倩. 荧光碳量子点及其在防伪中的应用[J]. 材料导报, 2022, 36(7): 20110186-11.
[4] 王杰, 魏奎先, 马文会, 伍继君. 工业微硅粉应用及提纯研究进展[J]. 材料导报, 2020, 34(23): 23081-23087.
[5] 王三胜, 王莹. 石墨提纯工艺研究进展综述和新技术展望[J]. 材料导报, 2020, 34(Z2): 147-151.
[6] 陈辉, 严大洲, 万烨, 孙强, 张邦洁. 区熔用多晶硅棒制备技术浅析[J]. 材料导报, 2020, 34(Z2): 152-156.
[7] 孔令宇, 黄慧娟, 杨喜, 马建锋, 尚莉莉, 刘杏娥. 生物质基炭气凝胶复合材料在超级电容器中应用的研究进展[J]. 材料导报, 2019, 33(Z2): 32-37.
[8] 陈卫丰, 吕果, 陶华超, 陈少娜, 李德江, 代忠旭. 石墨烯量子点的制备及在生物传感器中的应用研究进展[J]. 材料导报, 2019, 33(7): 1156-1162.
[9] 王燕锋,赵晓华,李庚英. 干湿变化对多壁碳纳米管/水泥砂浆压阻效应的影响[J]. 《材料导报》期刊社, 2017, 31(24): 20-25.
[10] 祁帅, 黄国强. 液相剥离法制备石墨烯的新进展*[J]. 《材料导报》期刊社, 2017, 31(17): 34-40.
[11] 祁帅, 黄国强. 超声波辅助二元溶剂剥离制备石墨烯*[J]. CLDB, 2017, 31(9): 72-76.
[12] 郭思彤,吴会军,杨丽修,刘燕妮,杨建明. 制备参数对SiO2气凝胶结构与性能影响的研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 38-44.
[13] 高宾, 张晓军. 水热法合成MoO3单晶纳米带及其形成机理*[J]. 《材料导报》期刊社, 2017, 31(2): 112-116.
[14] 杨晓娜, 任晓玲, 严孝清, 吴志强, 杨贵东. 活性炭对VOCs的吸附研究进展[J]. 材料导报, 2021, 35(17): 17111-17124.
[15] 陈丽, 黄银, 于元烈. 石墨烯基纳米复合薄膜及其摩擦学研究进展[J]. 材料导报, 2022, 36(11): 20090218-8.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed