Please wait a minute...
材料导报  2023, Vol. 37 Issue (12): 21110080-7    https://doi.org/10.11896/cldb.21110080
  无机非金属及其复合材料 |
基于细观尺度的再生混凝土多相导热系数理论模型
朱丽华1,2,*, 刘海林2, 韩伟2
1 西安建筑科技大学省部共建西部绿色建筑国家重点实验室,西安 710055
2 西安建筑科技大学土木工程学院,西安 710055
Theoretical Model of Multiphase Thermal Conductivity of Recycled Concrete Based on Mesoscale
ZHU Lihua1,2,*, LIU Hailin2, HAN Wei2
1 State Key Laboratory of Green Building in Western China, Xi’an University of Architecture & Technology, Xi’an 710055, China
2 School of Civil Engineering, Xi’an University of Architecture & Technology, Xi’an 710055, China
下载:  全 文 ( PDF ) ( 9894KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为分析再生混凝土导热系数变化机理,进行了再生混凝土导热系数理论模型研究。在细观尺度上,将再生混凝土看作由新硬化砂浆、天然骨料、界面过渡区、孔隙相组成的四相复合材料。采用等效化方法,建立了界面过渡区导热系数模型并进行了验证,同时定义了等效界面过渡区(NITZ)影响系数η,η与再生混凝土导热系数有显著的线性关系。基于复合材料导热系数计算模型,利用η建立再生混凝土导热系数理论模型,计算结果与测试结果吻合较好,误差小于6%。在此基础上,根据该模型分析了各相组分导热系数、水灰比、骨料取代率、孔隙饱和度等因素对再生混凝土导热系数的影响,揭示了再生混凝土与普通混凝土传热差异,为再生混凝土传热机理的进一步研究提供了理论基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱丽华
刘海林
韩伟
关键词:  再生混凝土  导热系数  细观尺度  界面过渡区  复合材料  传热机理    
Abstract: In order to analyze the mechanism of the change of thermal conductivity for recycled concrete, a theoretical model of the thermal conductivity of recycled concrete was investigated. On the mesoscale, the recycled concrete is regarded as a four-phase composite material composed of new hardened mortar, natural aggregate, interface transition zone and pore phase. Using the equivalent method, the thermal conductivity model of interface transition zone was established and verified, and the NITZ impact factor η was defined, which has a significant linear relationship with the thermal conductivity of recycled concrete. Based on the thermal conductivity model of composite materials, a theoretical model of the thermal conductivity of recycled concrete was proposed by using η. The calculated results of the model agree basically with experimental results, and the error is less than 6%. On this basis, the influence of factors such as thermal conductivity of each phase component, water-cement ratio, aggregate replacement and pore saturation level on the thermal conductivity of recycled concrete was analyzed by the model, revealing the difference in heat transfer between recycled concrete and normal concrete, and laying a theoretical foundation for further research on the heat transfer mechanism of recycled concrete.
Key words:  recycled concrete    thermal conductivity    mesoscale    interface transition zone    composite material    heat transfer mechanism
出版日期:  2023-06-25      发布日期:  2023-06-20
ZTFLH:  TU528.01  
基金资助: 陕西省科技厅重点产业创新链(群)项目(2018ZDCXL-SF-03-03-01)
通讯作者:  * 朱丽华,西安建筑科技大学土木工程学院教授、博士研究生导师。2008年西安建筑科技大学防灾减灾工程及防护工程专业博士毕业,2014—2015年美国纽约州立大学布法罗分校访问学者。陕西省青年科技新星,宝钢优秀教师奖获得者。现任西安建筑科技大学土木工程学院副院长,兼任中国工程建设标准化协会建筑振动专业委员会委员、中国土木工程学会防震减灾工程分会理事、中国建筑学会建筑结构分会青年理事等。目前主要从事混凝土结构、工程结构隔震减震、再生混凝土等方面的研究工作。在国内外发表论文60余篇。zhulihuaxa@163.com   
引用本文:    
朱丽华, 刘海林, 韩伟. 基于细观尺度的再生混凝土多相导热系数理论模型[J]. 材料导报, 2023, 37(12): 21110080-7.
ZHU Lihua, LIU Hailin, HAN Wei. Theoretical Model of Multiphase Thermal Conductivity of Recycled Concrete Based on Mesoscale. Materials Reports, 2023, 37(12): 21110080-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21110080  或          http://www.mater-rep.com/CN/Y2023/V37/I12/21110080
1 Marie I. Construction and Building Materials, 2017, 133, 516.
2 Zhang X. Response relationship between the micro environment and the external environment of recycled concrete. Master’s Thesis, China University of Mining and Technology, China, 2016 (in Chinese).
张鑫. 再生混凝土内部微环境与外部环境的响应关系. 硕士学位论文, 中国矿业大学, 2016.
3 Zhu L H, Dai J, Bai G L, et al. Construction and Building Materials, 2015, 94, 620.
4 Wang W J, Liu Y Z, Zhu L, et al. Materialprufung, 2017, 59(2), 202.
5 Guo Y D, Liu Y Z, Wang W J, et al. Journal of Building Engineering, 2020, 32, 101797.
6 Kazmi S M S, Munir M J, Wu Y F, et al. Construction and Building Materials, 2021, 270, 121433.
7 Miguel B, Jorge B, Luís E. Applied Sciences, 2017, 7(7), 740.
8 Shi W W. Research on Preparation and thermal performance of broken bridge tpye recycled concrete self-insulation block. Master’s Thesis, Shandong Agricultural University, China, 2021 (in Chinese).
石炜炜. 断桥式再生混凝土自保温砌块的制备及热工性能研究. 硕士学位论文, 山东农业大学, 2021.
9 Poon C S, Kou S C, Lam L. Construction and Building Materials, 2002, 16(5), 281.
10 Xiao J Z, Li W G, Sun Z H, et al. Cement and Concrete Composites, 2013, 37(3), 276.
11 Zhang H R. Deterioration mechanism of recycled aggregate concrete (RAC)based on interface parameters and the application of RAC. Ph. D. Thesis, Zhejiang University, China, 2016 (in Chinese).
张鸿儒. 基于界面参数的再生骨料混凝土性能劣化机理及工程应用. 博士学位论文, 浙江大学, 2016.
12 Xu F W, Tian B, Xu G. Yangtze River, 2020, 51(10), 177 (in Chinese).
徐福卫, 田斌, 徐港. 人民长江, 2020, 51(10), 177.
13 Peng Y J, Ying L P. Meso-analysis method of recycled concrete, Science Press, China, 2018, pp.51 (in Chinese).
彭一江, 应黎坪. 再生混凝土细观分析方法, 科学出版社, 2018, pp.51.
14 Zhang W P, Wang H, Gu X L. Journal of Building Materials, 2017, 20(2), 168 (in Chinese).
张伟平, 王浩, 顾祥林. 建筑材料学报, 2017, 20(2), 168.
15 Ollivier J P, Maso J C, Advanced Cement Based Materials, 1995, 2(1), 30.
16 Siddique S, Shrivastava S, Chaudhary S. Construction and Building Materials, 2017, 155, 688.
17 Li Y B, Li Z L, Yao X W, et al. Acta Materiae Compositae Sinica, 2022, 39(1), 361.
李云波, 李宗利, 姚希望, 等. 复合材料学报, 2022, 39(1), 361.
18 Bruggeman D A G. Annals of Physics, 1935, 24(7), 636.
19 Chen R, Gong J W. Journal of Yangtze River Scientific Research Institute, 2020, 37(9), 142 (in Chinese).
陈瑞, 宫经伟. 长江科学院院报, 2020, 37(9), 142.
20 Zhang W P, Tong F, Xin Y S, et al. Journal of Building Materials, 2015, 18(2), 183 (in Chinese).
张伟平, 童菲, 邢益善, 等. 建筑材料学报, 2015, 18(2), 183.
21 Khan M I. Building and Environment, 2002, 37(6), 607.
22 Huang Y B. Research on the thermal properties of recycled concrete. Master’s Thesis, Tongji University, China, 2006 (in Chinese).
黄运标. 再生混凝土高温性能研究. 硕士学位论文, 同济大学, 2006.
23 Maxwell J C A. A treatise on electricity and magnetism, Oxford University Press, USA, 1954, pp.434.
24 Finkelmann D R. GER patent, DE19750628, 1999.
25 Ai Y L, Ai Y F. Value Engineering, 2020, 39(9), 139 (in Chinese).
艾永林, 艾永飞. 价值工程, 2020, 39(9), 139.
26 Huang M, Zhao Y R, Ai Y L, et al. Concrete, 2021(3), 75 (in Chinese).
皇民, 赵玉如, 艾永林, 等. 混凝土, 2021(3), 75.
27 You F, Zheng J L. Journal of Fuzhou University(Natural Science Edition), 2018, 46(3), 391 (in Chinese).
游帆, 郑建岚. 福州大学学报(自然科学版), 2018, 46(3), 391.
28 Kim K H, Jeon S E, Kim J K, et al. Cement & Concrete Research, 2003, 33(3), 363.
29 Eskandari-Ghadi M. Journal of Materials Science, 2003, 23, 4525.
[1] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[2] 邵慧龙, 费志方, 李肖华, 赵爽, 李昆锋, 杨自春. 玻璃微珠/PI气凝胶复合材料的制备与吸声性能研究[J]. 材料导报, 2023, 37(9): 21090097-6.
[3] 刘云福, 刘峰, 姚初清, 蒋丹枫, 韩文敏, 戴耀东. 基于泡沫陶瓷三维互穿网络负压浸渍法制备新型耐高温中子屏蔽材料[J]. 材料导报, 2023, 37(8): 21090118-9.
[4] 张洪智, 金祖权, 姜能栋, 葛智, Erik Schlangen, 凌一峰, Branko Šavija, 王铮. 基于分段步进式弹塑性格构模型的混凝土破坏过程细观模拟[J]. 材料导报, 2023, 37(8): 21100198-7.
[5] 杨赟, 刘璇, 崔益华, 余彤, 武康乐, 潘蕾. 植物纤维增强树脂基复合材料界面纳米化改性的研究进展及应用[J]. 材料导报, 2023, 37(8): 21100069-11.
[6] 张曦挚, 崔红, 胡杨, 邓红兵. 利用等离子喷涂制备C/C复合材料表面耐烧蚀抗氧化涂层的研究进展[J]. 材料导报, 2023, 37(6): 21050162-7.
[7] 陶正凯, 荆肇乾, 王郑. 纳米纤维素材料在重金属废水治理中的应用[J]. 材料导报, 2023, 37(6): 21030120-8.
[8] 杨湘杰, 杨颜, 刘军, 史坤, 郑彬. 半固态等温热处理对Zr基非晶复合材料塑性变形机制的影响[J]. 材料导报, 2023, 37(4): 21080252-7.
[9] 刘洋, 庄蔚敏. 金属-聚合物及金属-复合材料薄壁结构压印连接技术的研究进展[J]. 材料导报, 2023, 37(3): 21110241-12.
[10] 邱继生, 朱梦宇, 周云仙, 高徐军, 李蕾蕾. 粉煤灰对煤矸石混凝土界面过渡区的改性效应[J]. 材料导报, 2023, 37(2): 21050280-7.
[11] 刘婷, 朱宇, 胡晓, 张松. 超声增材制造在航空航天领域的应用进展[J]. 材料导报, 2023, 37(2): 21040295-8.
[12] 仝博, 李永清, 张振海, 赵存生. 复合材料多层圆柱壳振动和声辐射问题研究进展[J]. 材料导报, 2023, 37(2): 21030025-8.
[13] 杨温鑫, 孟晓燕, 邓欣. 粉体粒径对数字光处理3D打印金刚石复合材料性能的影响[J]. 材料导报, 2023, 37(12): 21120211-6.
[14] 何晓龙, 陈志谦, 李璐, 石一非. 基于聚合物-陶瓷复合材料的异形龙伯透镜天线的研究及制造[J]. 材料导报, 2023, 37(12): 21100228-6.
[15] 王景东, 潘静雯, 张芝芳, 江剑, 黎健斌. CFRP层合板的二次低速冲击及剩余压缩强度试验研究[J]. 材料导报, 2023, 37(12): 21100084-8.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed