Research Progress on the Negative Difference Effect of Magnesium Alloys
HOU Jiyu1, WANG Baojie1,*, XU Kai1, XU Daokui2, SUN Jie1
1 School of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang 110159, China 2 Center for Corrosion and Protection of Materials, Institute of Metal Research, Chinese Academy of Science, Shenyang 110016, China
Abstract: With the continuous progress in industrialization, the demand for lightweight components in engineering applications is becoming increasingly urgent, which has significantly promoted the rapid development of Mg alloys. However, the poor corrosion resistance of Mg alloys seriously hinders their practical engineering applications. To effectively solve this issue, it is essential to comprehensively study the corrosion mechanism of Mg alloys. Mg alloys exhibit a typical negative difference effect (NDE) in their electrochemical corrosion process, i.e., the hydrogen evolution rate increases with the increase in potential under an anodic polarization process, which is different from the traditional electrochemical theory. In recent years, researchers from different countries have conducted several investigations on the NDE of Mg alloys and successively established eight theoretical models including the local protective film model, monovalent Mg ion model, dissolution and abscission model, MgH2 solution promotion theory, comprehensive theory, partial external electronic circuit consumption mechanism, hydrogen evolution through an exchange current density i0 increase mechanism, and electrocatalysis mechanism. Based on the above models, a deeper understanding of the hydrogen evolution process of Mg alloys is obtained and the depth of research on the corrosion mechanism of Mg alloys is improved. This paper overviews the basic principle and research status of NDE in the electrochemical corrosion of Mg alloys, summarizes the eight theoretical models of NDE and the development process of each model, highlights their shortcomings, and anticipates the research direction of NDE in the future.
通讯作者:
* 王保杰,沈阳理工大学教授、硕士研究生导师。2016年7月毕业于中国科学院金属研究所,获得材料科学与工程专业工学博士学位。研究方向为镁合金的腐蚀与防护。目前,在高水平期刊上发表论文 30 余篇,包括Corrosion Science、Journal of Magnesium and Alloys、Journal of Materials Science & Technology等。bjwang@alum.imr.ac.cn
1 Witte F, Kaese V, Haferkamp H, et al. Biomaterials, 2005, 26(17), 3557. 2 Atrens A, Song G L, Liu M, et al. Advanced Engineering Materials, 2015, 17(4), 400. 3 Atrens A, Winzer N, Dietzel W. Advanced Engineering Materials, 2011, 13(1-2), 11. 4 Chen Z H. Magnesium alloy, Chemical Industry Press, China, 2004 (in Chinese). 陈振华. 镁合金, 化学工业出版社, 2004. 5 Chen Z H. Wrought magnesium alloy, Chemical Industry Press, China, 2005 (in Chinese). 陈振华. 变形镁合金, 化学工业出版社, 2005. 6 Wei Y H, Xu B S. Theory and practice of corrosion protection of magne-sium alloys, Metallurgical Industry Press, China, 2007 (in Chinese). 卫英慧, 许并社. 镁合金腐蚀防护的理论与实践, 冶金工业出版社, 2007. 7 Chang Y C, Li J C, Xie W B. Magnesium alloy production technology and application, Metallurgical Industry Press, China, 2018 (in Chinese). 常毅传, 李骏骋, 谢伟滨. 镁合金生产技术与应用, 冶金工业出版社, 2018. 8 Zhu S. Design and forming basis of magnesium alloy repair and strengthening materials, Science Press, China, 2017 (in Chinese). 朱胜. 镁合金修复强化材料设计及成形基础, 科学出版社, 2017. 9 Wang L, Shinohara T, Zhang B P. Materials & Design, 2011, 33, 345. 10 Chai Y S, Wang L N, Sun G, et al. Advanced Materials Research, 2011, 1268, 2240. 11 Dai Y, Chen X H, Yan T, et al. Acta Metallurgical Sinica (English letters), 2020, 33(2), 225. 12 Wang X Y, Zhou Y R, Zhang J Q, et al. Equipment Environmental Engineering, 2015, 12(4), 129 (in Chinese). 王新印, 周亚茹, 张鉴清, 等. 装备环境工程, 2015, 12(4), 129. 13 Li D. Principle of electrochemistry 3rd ed. , Beihang University Press, China, 2008 (in Chinese). 李荻. 电化学原理第3版, 北京航空航天大学出版社, 2008. 14 Li C Q, Xu D K, Zhang Z R, et al. Journal of Materials Science & Technology, 2020, 57(22), 138. 15 Petty R L, Davidson A W, Kleinberg J. Journal of the American Chemical Society, 1954, 76(2), 363. 16 James W J, Straumanis M E, Bhatia B K, et al. Journal of the Electrochemical Society, 1963, 110(11), 1117. 17 Jian C, Wang J, Han E, et al. Corrosion Science, 2008, 50(5), 1292. 18 Bender S, Goellner J, Heyn A, et al. Materials & Corrosion, 2012, 63(8), 707. 19 Franker G S, Samaniego A, Birbilis N. Corrosion Science, 2013, 70(3), 104. 20 Williams G, Birbilis N, Mcmurray H N. Electrochemistry Communications, 2013, 36, 1. 21 Qiao Z, Shi Z, Hort N, et al. Corrosion Science, 2012, 61, 185. 22 Kirkland N T, Williams G, Birbilis N. Corrosion Science, 2012, 65(1), 5. 23 Atrens A, Dietzel W. Advanced Engineering Materials, 2007, 9(4), 292. 24 Kappes M, Iannuzzi M, Carranza R M. Journal of the Electrochemical Society, 2013, 160(4), C168. 25 Mueller W D, Hornberger H. International Journal of Molecular Sciences, 2014, 15(7), 11456. 26 Zhang W B. Corrosion Science, 1998, 40(10), 1769. 27 Zhao M C, Liu M, Song G L, et al. Corrosion Science, 2008, 50(11), 3168. 28 Cain T, Madden S B, Birbilis N, et al. Journal of the Electrochemical Society, 2015, 162(6), C228. 29 Shrestha N, Raja K S, Utgikar V. Journal of the Electrochemical Society, 2019, 166(14), A3139. 30 Whitby L. Transactions of the Faraday Society, 1933, 29, 844. 31 Straumanis M E, Wang Y N. Journal of the Electrochemical Society, 1955, 102(6), 304. 32 Robinson J L, King P F. Journal of the Electrochemical Society, 1961, 108(1), 36. 33 King P F. Journal of the Electrochemical Society, 1966, 113(6), 536. 34 Liu H G, Cao F Y, Song G L, et al. Journal of Materials Science & Technology, 2019, 35, 2003. 35 Gore P, Raja V S, Birbilis N. Journal of the Electrochemical Society, 2018, 165(13), C849. 36 Zhang W T, Liu Q J, Chen Y Q, et al. Materials Letters, 2018, 232, 54. 37 Song G L, Atrens A, John D S, et al. Corrosion Science, 1997, 39(10-11), 1981. 38 Song G L, Atrens A, Stjohn D. Corrosion Science, 1997, 39(5), 855. 39 Rausch M D, Mcewen W E, Kleinberg J. Journal of the American Chemical Society, 1954, 76(14), 3622. 40 Rausch M D, Mcewen W E, Kleinberg J. Journal of the American Chemical Society, 1955, 77(8), 2093. 41 Mcewen W E, Kleinberg J, Burdick D L, et al. Journal of the American Chemical Society, 1956, 78(18), 227. 42 Greenblatt J H. Journal of the Electrochemical Society, 1956, 103(10), 539. 43 Hull M N. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1972, 38(1), A1. 44 Gusieva K, Davies C H J, Scully J R, et al. International Materials Reviews, 2015, 60(3), 169. 45 Shi Z, Atrens A. Corrosion Science, 2013, 77, 403. 46 Samaniego A, Hurlet B L, Franker G S. Journal of Electroanalytical Chemistry, 2014, 737, 123. 47 Zhang Q H, Liu P, Zhu Z J. Journal of Electroanalytical Chemistry, 2021, 880, 114837. 48 Beetz W. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1866, 32(216), 269. 49 Marsh G A, Schaschl E. Journal of the Electrochemical Society, 1960, 107(12), 960. 50 Straumanis M E, Bhatia B K. Journal of the Electrochemical Society, 1963, 110(5), 357. 51 Kim J G, Choi Y S, Yeo J H, et al. Corrosion, 2003, 59(3), 228. 52 Lee C D, Kang C S, Shin K S. Metals & Materials International, 2001, 7(4), 385. 53 Perrault G G. Journal of Electroanalytical Chemistry & Interfacial Electrochemistry, 1970, 27(1), 47. 54 Gulbrandsen E. Electrochimica Acta, 1992, 37(8), 1403. 55 Gulbrandsen E, Taftø J, Olsen A. Corrosion Science, 1993, 34(9), 1423. 56 Chen J, Dong J H, Wang A J Q, et al. Corrosion Science, 2008, 50(12), 3610. 57 Seyeux A, Liu M, Schmutz P, et al. Corrosion Science, 2009, 51(9), 1883. 58 Song G L, Atrens A, Li Y, et al. In:Negative Difference Effect of Magnesium. Australasian, 1997, pp. 38. 59 Song G L. Advanced Engineering Materials, 2005, 7(7), 563. 60 Song G L, Atrens A. Advanced Engineering Materials, 1999, 1(1), 11. 61 Song G L, Atrens A. Advanced Engineering Materials, 2010, 5(12), 837. 62 Shi Z, Cao F, Song G L, et al. Corrosion Science, 2014, 88, 434. 63 King A D, Birbilis N, Scully J Y. Electrochemical Society, 2014, 121, 394. 64 Liao H J, Zhou X F, Li H Z, et al. Transactions of Nonferrous Metals Society of China, 2015, 25(12), 3921. 65 Wang X Y, Xia Y, Zhou Y R, et al. Acta Metallurgica Sinica, 2015(5), 631 (in Chinese). 王新印, 夏妍, 周亚茹, 等. 金属学报, 2015(5), 631. 66 Buggio D, Trueba M, Trasatti S P. Corrosion Science, 2016, 104, 173. 67 Berkh O, Ellaz N, Gileadi E. Journal of the Electrochemical Society, 2014, 161(5), D219. 68 Cao F, Shi Z, Hofstetter J, et al. Corrosion Science, 2013, 75, 78. 69 Willams G, Mcmurray H N. Journal of the Electrochemical Society, 2008, 155(7), C340. 70 Taheri M, Kish J R, Birbilis N, et al. Electrochimica Acta, 2014, 116, 396. 71 Birbilis N, King A D, Thomas S, et al. Electrochimica Acta, 2014, 132(19), 277. 72 Birbilis N, Williams G, Gusieva K, et al. Electrochemistry Communications, 2013, 34, 295. 73 Curioni M. Electrochimica Acta, 2014, 120(7), 284. 74 Fajardo S, Glover C F, Williams G, et al. Electrochimica Acta, 2016, 212, 510.