Please wait a minute...
材料导报  2023, Vol. 37 Issue (12): 21070256-7    https://doi.org/10.11896/cldb.21070256
  金属与金属基复合材料 |
镁合金负差数效应的研究进展
侯继禹1, 王保杰1,*, 许凯1, 许道奎2, 孙杰1
1 沈阳理工大学环境与化学工程学院,沈阳 110159
2 中国科学院金属研究所材料腐蚀与防护中心,沈阳 110016
Research Progress on the Negative Difference Effect of Magnesium Alloys
HOU Jiyu1, WANG Baojie1,*, XU Kai1, XU Daokui2, SUN Jie1
1 School of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang 110159, China
2 Center for Corrosion and Protection of Materials, Institute of Metal Research, Chinese Academy of Science, Shenyang 110016, China
下载:  全 文 ( PDF ) ( 4762KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着我国工业水平的不断进步,工程应用领域对轻量化的需求愈加迫切,极大推动了镁合金的快速发展。然而,镁合金的耐蚀性较差,严重阻碍了其实际工程应用。为了有效解决镁合金耐蚀性差的问题,亟需深入研究其腐蚀机理。镁合金电化学腐蚀过程中存在典型的负差数效应(Negative difference effect,NDE),即在阳极极化下镁合金的析氢速度随电位升高而增加,与传统的电化学动力学理论相异。
近年来,国内外学者对镁合金的负差数效应开展了大量研究,先后建立了局部保护膜模型、单价镁离子模型、溶解脱落模型、氢化镁促溶理论、综合理论、部分电子外电路消耗机理、析氢交换电流密度i0增大机理和电催化机理八种理论模型。基于上述模型,人们深化了对镁合金析氢过程的认识,提升了镁合金腐蚀机理的研究深度。
本文综述了镁合金电化学腐蚀过程中负差数效应的基本原理及研究现状,归纳出八种负差数效应的理论模型,总结了各模型的发展历程,指出了它们各自存在的不足之处,展望了镁合金腐蚀负差数效应的研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
侯继禹
王保杰
许凯
许道奎
孙杰
关键词:  镁合金  负差数效应  腐蚀  单价镁离子  理论模型  阳极极化    
Abstract: With the continuous progress in industrialization, the demand for lightweight components in engineering applications is becoming increasingly urgent, which has significantly promoted the rapid development of Mg alloys. However, the poor corrosion resistance of Mg alloys seriously hinders their practical engineering applications. To effectively solve this issue, it is essential to comprehensively study the corrosion mechanism of Mg alloys. Mg alloys exhibit a typical negative difference effect (NDE) in their electrochemical corrosion process, i.e., the hydrogen evolution rate increases with the increase in potential under an anodic polarization process, which is different from the traditional electrochemical theory.
In recent years, researchers from different countries have conducted several investigations on the NDE of Mg alloys and successively established eight theoretical models including the local protective film model, monovalent Mg ion model, dissolution and abscission model, MgH2 solution promotion theory, comprehensive theory, partial external electronic circuit consumption mechanism, hydrogen evolution through an exchange current density i0 increase mechanism, and electrocatalysis mechanism. Based on the above models, a deeper understanding of the hydrogen evolution process of Mg alloys is obtained and the depth of research on the corrosion mechanism of Mg alloys is improved.
This paper overviews the basic principle and research status of NDE in the electrochemical corrosion of Mg alloys, summarizes the eight theoretical models of NDE and the development process of each model, highlights their shortcomings, and anticipates the research direction of NDE in the future.
Key words:  magnesium alloy    negative difference effect    corrosion    monovalent magnesium ion    theoretical model    anodic polarization
出版日期:  2023-06-25      发布日期:  2023-06-20
ZTFLH:  TG178  
基金资助: 国家自然科学基金(52071220;51871211;U21A2049);沈阳理工大学高水平成果建设项目(SYLUXM202105)
通讯作者:  * 王保杰,沈阳理工大学教授、硕士研究生导师。2016年7月毕业于中国科学院金属研究所,获得材料科学与工程专业工学博士学位。研究方向为镁合金的腐蚀与防护。目前,在高水平期刊上发表论文 30 余篇,包括Corrosion Science、Journal of Magnesium and Alloys、Journal of Materials Science & Technology等。bjwang@alum.imr.ac.cn   
作者简介:  侯继禹,2020年6月毕业于沈阳理工大学,获得理学学士学位。现为沈阳理工大学环境与化学工程学院硕士研究生,在王保杰教授的指导下进行研究。目前主要研究领域为腐蚀与防护。
引用本文:    
侯继禹, 王保杰, 许凯, 许道奎, 孙杰. 镁合金负差数效应的研究进展[J]. 材料导报, 2023, 37(12): 21070256-7.
HOU Jiyu, WANG Baojie, XU Kai, XU Daokui, SUN Jie. Research Progress on the Negative Difference Effect of Magnesium Alloys. Materials Reports, 2023, 37(12): 21070256-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21070256  或          http://www.mater-rep.com/CN/Y2023/V37/I12/21070256
1 Witte F, Kaese V, Haferkamp H, et al. Biomaterials, 2005, 26(17), 3557.
2 Atrens A, Song G L, Liu M, et al. Advanced Engineering Materials, 2015, 17(4), 400.
3 Atrens A, Winzer N, Dietzel W. Advanced Engineering Materials, 2011, 13(1-2), 11.
4 Chen Z H. Magnesium alloy, Chemical Industry Press, China, 2004 (in Chinese).
陈振华. 镁合金, 化学工业出版社, 2004.
5 Chen Z H. Wrought magnesium alloy, Chemical Industry Press, China, 2005 (in Chinese).
陈振华. 变形镁合金, 化学工业出版社, 2005.
6 Wei Y H, Xu B S. Theory and practice of corrosion protection of magne-sium alloys, Metallurgical Industry Press, China, 2007 (in Chinese).
卫英慧, 许并社. 镁合金腐蚀防护的理论与实践, 冶金工业出版社, 2007.
7 Chang Y C, Li J C, Xie W B. Magnesium alloy production technology and application, Metallurgical Industry Press, China, 2018 (in Chinese).
常毅传, 李骏骋, 谢伟滨. 镁合金生产技术与应用, 冶金工业出版社, 2018.
8 Zhu S. Design and forming basis of magnesium alloy repair and strengthening materials, Science Press, China, 2017 (in Chinese).
朱胜. 镁合金修复强化材料设计及成形基础, 科学出版社, 2017.
9 Wang L, Shinohara T, Zhang B P. Materials & Design, 2011, 33, 345.
10 Chai Y S, Wang L N, Sun G, et al. Advanced Materials Research, 2011, 1268, 2240.
11 Dai Y, Chen X H, Yan T, et al. Acta Metallurgical Sinica (English letters), 2020, 33(2), 225.
12 Wang X Y, Zhou Y R, Zhang J Q, et al. Equipment Environmental Engineering, 2015, 12(4), 129 (in Chinese).
王新印, 周亚茹, 张鉴清, 等. 装备环境工程, 2015, 12(4), 129.
13 Li D. Principle of electrochemistry 3rd ed. , Beihang University Press, China, 2008 (in Chinese).
李荻. 电化学原理第3版, 北京航空航天大学出版社, 2008.
14 Li C Q, Xu D K, Zhang Z R, et al. Journal of Materials Science & Technology, 2020, 57(22), 138.
15 Petty R L, Davidson A W, Kleinberg J. Journal of the American Chemical Society, 1954, 76(2), 363.
16 James W J, Straumanis M E, Bhatia B K, et al. Journal of the Electrochemical Society, 1963, 110(11), 1117.
17 Jian C, Wang J, Han E, et al. Corrosion Science, 2008, 50(5), 1292.
18 Bender S, Goellner J, Heyn A, et al. Materials & Corrosion, 2012, 63(8), 707.
19 Franker G S, Samaniego A, Birbilis N. Corrosion Science, 2013, 70(3), 104.
20 Williams G, Birbilis N, Mcmurray H N. Electrochemistry Communications, 2013, 36, 1.
21 Qiao Z, Shi Z, Hort N, et al. Corrosion Science, 2012, 61, 185.
22 Kirkland N T, Williams G, Birbilis N. Corrosion Science, 2012, 65(1), 5.
23 Atrens A, Dietzel W. Advanced Engineering Materials, 2007, 9(4), 292.
24 Kappes M, Iannuzzi M, Carranza R M. Journal of the Electrochemical Society, 2013, 160(4), C168.
25 Mueller W D, Hornberger H. International Journal of Molecular Sciences, 2014, 15(7), 11456.
26 Zhang W B. Corrosion Science, 1998, 40(10), 1769.
27 Zhao M C, Liu M, Song G L, et al. Corrosion Science, 2008, 50(11), 3168.
28 Cain T, Madden S B, Birbilis N, et al. Journal of the Electrochemical Society, 2015, 162(6), C228.
29 Shrestha N, Raja K S, Utgikar V. Journal of the Electrochemical Society, 2019, 166(14), A3139.
30 Whitby L. Transactions of the Faraday Society, 1933, 29, 844.
31 Straumanis M E, Wang Y N. Journal of the Electrochemical Society, 1955, 102(6), 304.
32 Robinson J L, King P F. Journal of the Electrochemical Society, 1961, 108(1), 36.
33 King P F. Journal of the Electrochemical Society, 1966, 113(6), 536.
34 Liu H G, Cao F Y, Song G L, et al. Journal of Materials Science & Technology, 2019, 35, 2003.
35 Gore P, Raja V S, Birbilis N. Journal of the Electrochemical Society, 2018, 165(13), C849.
36 Zhang W T, Liu Q J, Chen Y Q, et al. Materials Letters, 2018, 232, 54.
37 Song G L, Atrens A, John D S, et al. Corrosion Science, 1997, 39(10-11), 1981.
38 Song G L, Atrens A, Stjohn D. Corrosion Science, 1997, 39(5), 855.
39 Rausch M D, Mcewen W E, Kleinberg J. Journal of the American Chemical Society, 1954, 76(14), 3622.
40 Rausch M D, Mcewen W E, Kleinberg J. Journal of the American Chemical Society, 1955, 77(8), 2093.
41 Mcewen W E, Kleinberg J, Burdick D L, et al. Journal of the American Chemical Society, 1956, 78(18), 227.
42 Greenblatt J H. Journal of the Electrochemical Society, 1956, 103(10), 539.
43 Hull M N. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1972, 38(1), A1.
44 Gusieva K, Davies C H J, Scully J R, et al. International Materials Reviews, 2015, 60(3), 169.
45 Shi Z, Atrens A. Corrosion Science, 2013, 77, 403.
46 Samaniego A, Hurlet B L, Franker G S. Journal of Electroanalytical Chemistry, 2014, 737, 123.
47 Zhang Q H, Liu P, Zhu Z J. Journal of Electroanalytical Chemistry, 2021, 880, 114837.
48 Beetz W. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1866, 32(216), 269.
49 Marsh G A, Schaschl E. Journal of the Electrochemical Society, 1960, 107(12), 960.
50 Straumanis M E, Bhatia B K. Journal of the Electrochemical Society, 1963, 110(5), 357.
51 Kim J G, Choi Y S, Yeo J H, et al. Corrosion, 2003, 59(3), 228.
52 Lee C D, Kang C S, Shin K S. Metals & Materials International, 2001, 7(4), 385.
53 Perrault G G. Journal of Electroanalytical Chemistry & Interfacial Electrochemistry, 1970, 27(1), 47.
54 Gulbrandsen E. Electrochimica Acta, 1992, 37(8), 1403.
55 Gulbrandsen E, Taftø J, Olsen A. Corrosion Science, 1993, 34(9), 1423.
56 Chen J, Dong J H, Wang A J Q, et al. Corrosion Science, 2008, 50(12), 3610.
57 Seyeux A, Liu M, Schmutz P, et al. Corrosion Science, 2009, 51(9), 1883.
58 Song G L, Atrens A, Li Y, et al. In:Negative Difference Effect of Magnesium. Australasian, 1997, pp. 38.
59 Song G L. Advanced Engineering Materials, 2005, 7(7), 563.
60 Song G L, Atrens A. Advanced Engineering Materials, 1999, 1(1), 11.
61 Song G L, Atrens A. Advanced Engineering Materials, 2010, 5(12), 837.
62 Shi Z, Cao F, Song G L, et al. Corrosion Science, 2014, 88, 434.
63 King A D, Birbilis N, Scully J Y. Electrochemical Society, 2014, 121, 394.
64 Liao H J, Zhou X F, Li H Z, et al. Transactions of Nonferrous Metals Society of China, 2015, 25(12), 3921.
65 Wang X Y, Xia Y, Zhou Y R, et al. Acta Metallurgica Sinica, 2015(5), 631 (in Chinese).
王新印, 夏妍, 周亚茹, 等. 金属学报, 2015(5), 631.
66 Buggio D, Trueba M, Trasatti S P. Corrosion Science, 2016, 104, 173.
67 Berkh O, Ellaz N, Gileadi E. Journal of the Electrochemical Society, 2014, 161(5), D219.
68 Cao F, Shi Z, Hofstetter J, et al. Corrosion Science, 2013, 75, 78.
69 Willams G, Mcmurray H N. Journal of the Electrochemical Society, 2008, 155(7), C340.
70 Taheri M, Kish J R, Birbilis N, et al. Electrochimica Acta, 2014, 116, 396.
71 Birbilis N, King A D, Thomas S, et al. Electrochimica Acta, 2014, 132(19), 277.
72 Birbilis N, Williams G, Gusieva K, et al. Electrochemistry Communications, 2013, 34, 295.
73 Curioni M. Electrochimica Acta, 2014, 120(7), 284.
74 Fajardo S, Glover C F, Williams G, et al. Electrochimica Acta, 2016, 212, 510.
[1] 刘晓英, 阮文琳, 张育新, 饶劲松, 尹长青, 张贤明, 柳云骐. 无机-有机杂化微胶囊:制备技术及在抗磨耐腐蚀涂层中的应用[J]. 材料导报, 2023, 37(9): 21060113-9.
[2] 张喜庆, 滕莹雪, 郭菁. 元胞自动机在金属材料腐蚀研究中的应用[J]. 材料导报, 2023, 37(8): 21050078-11.
[3] 陈思雨, 张弦, 李腾, 刘静, 吴开明. 危废处理超临界水氧化环境中装置材料腐蚀的研究进展[J]. 材料导报, 2023, 37(8): 21100176-7.
[4] 卫元坤, 张优, 张政, 王菊萍, 陈飞. 基于缓蚀剂微/纳米容器的智能自修复涂层研究进展[J]. 材料导报, 2023, 37(8): 21050145-10.
[5] 孔丽娟, 梁增蕴, 鹿桓, 赵文静. 重力污水管道混凝土的加速腐蚀模拟研究[J]. 材料导报, 2023, 37(7): 21060148-7.
[6] 赵冠琳, 刘树帅, 吴东亭, 王新洪, 邹勇. 元素W与Mo对非晶Ni-P镀层热稳定性和耐腐蚀性能的影响[J]. 材料导报, 2023, 37(7): 21070071-7.
[7] 黄仁君, 闫二虎, 陈运灿, 葛晓宇, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe合金的组织和耐腐蚀性能及置氢前后的显微硬度研究[J]. 材料导报, 2023, 37(7): 21070095-7.
[8] 安凌云, 常成功, 康迪菘, 王钊, 孟雷超, 彭建洪. 镁合金微弧氧化膜在三种饱和盐溶液中的耐蚀性研究[J]. 材料导报, 2023, 37(7): 21070250-10.
[9] 谭钦文, 邓黎鹏, 易润华, 程东海, 李东阳. Ni中间层镁/钛异种材料电阻点焊接头组织与性能[J]. 材料导报, 2023, 37(7): 21090077-4.
[10] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[11] 蔡达, 王立世, 胡心彬. AA5052铝合金/AZ31B镁合金搅拌摩擦焊接头的腐蚀行为研究[J]. 材料导报, 2023, 37(4): 21040318-7.
[12] 陈昊翔, 李伟华. 自感知发光涂层在腐蚀监测中的研究进展[J]. 材料导报, 2023, 37(2): 21050151-10.
[13] 吴省均, 陈跃良, 张勇, 卞贵学, 张杨广, 王安东, 张柱柱. 腐蚀条件下高强钢超高周疲劳性能及损伤机理研究进展[J]. 材料导报, 2023, 37(12): 21040055-11.
[14] 王勇, 张微微, 李永存, 张旭昀, 孙丽丽. 第一性原理计算在电化学腐蚀中的应用研究进展[J]. 材料导报, 2023, 37(12): 21110046-11.
[15] 刘泽辉, 杨银辉, 张凤珍, 王刘行. 大变形热压缩18.7Cr-5.8Mn-1.0Ni-0.23N节镍型双相不锈钢的晶间腐蚀行为研究[J]. 材料导报, 2023, 37(12): 22010176-10.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed