Please wait a minute...
材料导报  2023, Vol. 37 Issue (12): 20080146-6    https://doi.org/10.11896/cldb.20080146
  金属与金属基复合材料 |
金属复合极薄带制备工艺研究进展
罗超1,2, 刘晓1,2, 任忠凯1,2, 王涛1,2,*, 王天翔3
1 太原理工大学机械与运载工程学院,太原 030024
2 先进金属复合材料成形技术与装备教育部工程研究中心,太原 030024
3 山西太钢不锈钢精密带钢有限公司,太原 030024
Research Progress in Preparation of Ultra-thin Metal Composite Foil
LUO Chao1,2, LIU Xiao1,2, REN Zhongkai1,2, WANG Tao1,2,*, WANG Tianxiang3
1 College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, China
2 Engineering Research Center of Advanced Metal Composites Forming Technology and Equipment, Ministry of Education, Taiyuan 030024, China
3 Shanxi Taigang Stainless Steel Precision Strip Co., Ltd., Taiyuan 030024, China
下载:  全 文 ( PDF ) ( 3742KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着电子工业、微型机器人等相关产业向智能化、微型化发展,工业产品对金属复合材料厚度提出了更高要求,研发性能优良的金属复合极薄带具有重要意义。
金属极薄带轧制过程受到最小可轧厚度的限制,这增加了异种金属复合极薄带的制备难度。目前,制备金属复合极薄带的主要方法有喷射沉积法、磁控溅射法、扩散焊接法和轧制复合法。喷射沉积法和磁控溅射法工艺复杂,成本较高,通过扩散焊接法得到的金属复合极薄带结合强度较低,难以大规模生产。轧制复合法可分为“先复合后减薄”和“先减薄后复合”组合工艺。“先复合后减薄”组合工艺在较为成熟的异种金属中厚板轧制复合技术基础上进行后续减薄过程,但此工艺复杂,成本较高;“先减薄后复合”组合工艺直接采用极薄带材作为原料,复合工艺较简单,但对设备要求较高。
本文归纳了金属复合极薄带的制备方法,重点评析了轧制复合组合工艺在金属复合极薄带材制备的应用,综述了金属复合极薄带材制备过程方面的研究新进展,并预测了金属复合极薄带材制备工艺研究的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗超
刘晓
任忠凯
王涛
王天翔
关键词:  金属复合极薄带  轧制复合法  先复合后减薄  先减薄后复合    
Abstract: The intelligent and miniaturization development of the electronic industry, micro-robot, and other related industries has highlighted the important role of the thickness of the industrial metal composite foils in industrial products. Preparing ultra-thin metal composite foil with good mechanical properties is also important.
The rolling process of ultra-thin metal composite foil is limited by the minimum rolling thickness, which increases the difficulty in preparing hete-rogeneous ultra-thin metal composite foil. At present, jet deposition, magnetron sputtering, diffusion welding, and rolling composite are the main methods of preparing metal composite foils. Among them, jet deposition and magnetron sputtering are complex and costly. The bonding strength of metal composite foils prepared by diffusion welding is low, and these foils are not conducive to large-scale production. The rolling compounding method can be divided into ‘compounding before thinning’ and ‘thinning before compounding’ rolling processes. The rolling process of ‘compounding before thinning’ conducts the subsequent thinning process based on the relatively mature rolling lamination technology of dissimilar metal medium and heavy plates. However, this process is complex and costly. The ‘thinning before compounding’ rolling process directly uses ultra-thin strips as raw material. The compounding process is relatively simple, but it has high requirements for equipment.
The preparation process of ultra-thin metal composite foil is summarized in this paper, and the application of the combined bonding process is highly reviewed. The research progress of the rolling compounding method in the preparation process of ultra-thin metal composite foil is reviewed, and the future research direction of the preparation process of ultra-thin metal composite foil is forecasted.
Key words:  ultra-thin metal composite foil    rolling compounding method    compounding before thinning    thinning before compounding
出版日期:  2023-06-25      发布日期:  2023-06-20
ZTFLH:  TG335.81  
基金资助: 国家自然科学基金(51974196);国家自然科学基金重大项目(U22A20188)
通讯作者:  * 王涛,太原理工大学机械与运载工程学院教授、博士研究生导师。2012年毕业于燕山大学机械设计及理论专业,获博士学位。长期从事轧制技术与装备、智能化设计等相关研究。主持国家重点研发计划课题、JKW基础加强重点项目、国家自然科学区域联合重点基金、国防科技创新特区基金等科研项目20余项。以第一或通信作者身份发表学术论文50余篇,授权国家发明专利30余项。twang@tyut.edu.cn   
作者简介:  罗超,2018年本科毕业于太原理工大学机械设计制造及其自动化专业,2021年研究生毕业于太原理工大学机械工程专业,主要从事铜/不锈钢复合极薄带轧制工艺研究。
引用本文:    
罗超, 刘晓, 任忠凯, 王涛, 王天翔. 金属复合极薄带制备工艺研究进展[J]. 材料导报, 2023, 37(12): 20080146-6.
LUO Chao, LIU Xiao, REN Zhongkai, WANG Tao, WANG Tianxiang. Research Progress in Preparation of Ultra-thin Metal Composite Foil. Materials Reports, 2023, 37(12): 20080146-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080146  或          http://www.mater-rep.com/CN/Y2023/V37/I12/20080146
1 Wang T, Li S, Ren Z K, et al. Materials Letters, 2019, 234, 79.
2 Qi Z C, Xiao H, Yu C, et al. Journal of Manufacturing Processes, 2019, 44, 133.
3 Zhang X B, Yu Y B, Liu B, et al. Journal of Alloys and Compounds, 2019, 805, 338.
4 Jovanović M T, Ilić N, Cvijović-Alagić I, et al. Transactions of Nonferrous Metals Society of China, 2017, 27(9), 1907.
5 Zhao J W, Huo M S, Ma X G, et al. Materials Science and Engineering:A, 2019, 747, 53.
6 Keife H, Shi J Y, McElwain L, et al. Journal of Materials Processing Technology, 2002, 121, 50.
7 Chen S D, Liu X H, Liu L Z. Transactions of Nonferrous Metals Society of China, 2015, 25(10), 3370.
8 Liu X, Liu X H, Song M, et al. Transactions of Nonferrous Metals Society of China, 2016, 26(2), 501.
9 Zhang J Y, Yao J J, Zeng X Y, et al. The Chinese Journal of Nonferrous Metals, 2014, 24(5), 1275(in Chinese).
张建宇, 姚金金, 曾祥勇, 等. 中国有色金属学报, 2014, 24(5), 1275.
10 Huang H J, Zhang Z W, Wang S S, et al. Journal of Shenyang University of Technology, 2009, 31 (5), 531(in Chinese).
黄宏军, 张泽伟, 王书生, 等. 沈阳工业大学学报, 2009, 31(5), 531.
11 Zhang L F, Gao R, Zhao B L, et al. Journal of Alloys and Compounds, 2020, 827, 154312.
12 Han Y, Zhang S H, Bai R, et al. International Journal of Refractory Metals and Hard Materials, 2020, 91, 105256.
13 Lin Z S, Li N, Qiu Y Q, et al. Chinese Journal of Rare Metals, 2006(S1), 68(in Chinese).
林兆森, 李娜, 邱以清, 等. 稀有金属, 2006(S1), 68.
14 Liu H, Zheng X R. Materials Reports, 2012, 26(Z1), 131 (in Chinese).
刘环, 郑晓冉. 材料导报, 2012, 26(Z1), 131.
15 Li M L, Pu C H, Jiao D H, et al. China Metalforming Equipment & Manufacturing Technology, 2013, 48(5), 83(in Chinese).
李茂林, 浦承皓, 焦殿辉, 等. 锻压装备与制造技术, 2013, 48 (5), 83.
16 Wang A H. Steel Rolling, 2011, 28(4), 42(in Chinese).
王爱华. 轧钢, 2011, 28(4), 42.
17 Zhu H F. Nonferrous Metals Processing, 2014(4), 4(in Chinese).
朱航飞. 有色金属加工, 2014(4), 4.
18 Xiao H, Liu X. Iron & Steel, 2019, 54(6), 48(in Chinese).
肖宏, 刘晓. 钢铁, 2019, 54(6), 48.
19 Liu X, Xiao H. Journal of Materials Processing Technology, 2020, 278, 116537.
20 Ren Z K, Wang T, Wang Y L, et al. Iron & Steel, 2018, 53(12), 62(in Chinese).
任忠凯, 王涛, 王跃林, 等. 钢铁, 2018, 53(12), 62.
21 Liu X H, Song M, Sun X K, et al. Journal of Mechanical Engineering, 2017, 53(10), 1 (in Chinese).
刘相华, 宋孟, 孙祥坤, 等. 机械工程学报, 2017, 53(10), 1.
22 Ren Z K, Xiao H, Liu X. Iron & Steel, 2017, 52 (8), 60(in Chinese).
任忠凯, 肖宏, 刘晓. 钢铁, 2017, 52(8), 60.
23 Zhang J G, Shi H S, Sun D S. Journal of Materials Processing Technology, 2003, 138, 357.
24 Singer A. Metallic Materials, 1970, 4(4), 246.
25 Zhang X N, Jiang Y H. Foundry Technology, 2017, 38(5), 981(in Chinese).
张昕楠, 姜伊辉. 铸造技术, 2017, 38(5), 981.
26 Chen Z H, Yan H G, Chen G, et al. Journal of Hunan University (Natural Science), 2001(5), 20(in Chinese).
陈振华, 严红革, 陈刚, 等. 湖南大学学报(自然科学版), 2001(5), 20.
27 Ning H L, Wang Y P, Huang F X, et al. Journal of Functional Materials, 2002(2), 166(in Chinese).
宁洪龙, 王一平, 黄福祥, 等. 功能材料, 2002(2), 166.
28 Peng C Q, Huang B Y. Nonferrous Metals, 2002(1), 12 (in Chinese).
彭超群, 黄伯云. 有色金属, 2002(1), 12.
29 Samal S. Powder Technology, 2020, 366, 43.
30 Tang Q, Ning F F, Fu D F, et al. Powder Metallurgy Technology, 2004 (1), 12 (in Chinese).
汤琼, 宁洪峰, 付定发, 等. 粉末冶金技术, 2004(1), 12.
31 Cao L, Zhang R B. Metallurgical Equipment, 1994(6), 8 (in Chinese).
曹羚, 张如斌. 冶金设备, 1994(6), 8.
32 Zhao X J. Synthetic Materials Aging and Application, 2020, 49 (2), 120 (in Chinese).
赵向杰. 合成材料老化与应用, 2020, 49(2), 120.
33 Kelly P J, Arnell R D. Vacuum, 2000, 56(3), 159.
34 Safi I. Cheminform, 2000, 127(2-3), 203.
35 Li F, Zhu H, Li L H, et al. Vacuum Electronics, 2011(3), 49(in Chinese).
李芬, 朱颖, 李刘合, 等. 真空电子技术, 2011(3), 49.
36 Wang J, Hao S. Technology Innovation and Application, 2015(2), 35 (in Chinese).
王俊, 郝赛. 科技创新与应用, 2015(2), 35.
37 Wang Y, Zhao X N, Dang X A, et al. Journal of Materials Engineering, 2019, 47(11), 148(in Chinese).
王瑶, 赵雪妮, 党新安, 等. 材料工程, 2019, 47(11), 148.
38 Liu Y S, He Z B, Li J, et al. Atomic Energy Science and Technology, 2014, 48(5), 955(in Chinese).
刘艳松, 何智兵, 李俊, 等. 原子能科学技术, 2014, 48(5), 955.
39 Zhang W X, Yao W, Liu Y Y, et al. Materials Reports, 2015, 29(21), 98(in Chinese).
张温馨, 姚渭, 刘莹莹, 等. 材料导报, 2015, 29(21), 98.
40 Fukaya Bobo, Auburn Taihisa, Akihiko Norita, et al. Proceed of the Fusion Meeting, 2001, 19, 334.
41 Wu H Y, Lee S, Wang J Y. Journal of Materials Processing Technology, 1998, 75(1-3), 173.
42 Wu H, Fan G H, Cui X P, et al. Materials Science and Engineering:A, 2013, 585, 439.
43 Wang T, Qi Y Y, Liu J L, et al. Journal of Harbin Institute of Technology, 2020, 52(6), 42(in Chinese).
王涛, 齐艳阳, 刘江林, 等. 哈尔滨工业大学学报, 2020, 52(6), 42.
44 Jie J C, Liu C B, Wang S H, et al. Materials Science and Technology, 2019, 35(15), 1840.
45 Elahi S A, Forouzan M R. Thin-Walled Structures, 2019, 137, 19.
46 Zheng Y W, Zhang Z H, Jiang Y B. Journal of Magnetism and Magnetic Materials, 2018, 452, 266.
47 Olexandr Grydin, Mykhailo Stolbchenko, Mirko Schaper. Procedia Engineering, 2017, 207, 1695.
48 Ji C, Huang H G, Sun J N, et al. China Mechanical Engineering, 2019, 30(15), 1873(in Chinese).
季策, 黄华贵, 孙静娜, 等. 中国机械工程, 2019, 30(15), 1873.
49 Yu Q B, Liu X H, Sun Y, et al. Scientia Sinica Technologica, 2016, 46(11), 1166(in Chinese).
于庆波, 刘相华, 孙莹, 等. 中国科学:技术科学, 2016, 46(11), 1166.
50 Battezzati L, Pappalepore P, Durbiano F, et al. Acta Materialia, 1999, 47(6), 1901.
51 Vahid Yousefi Mehr, Mohammad Reza Toroghinejad, Ahmad Rezaeian, et al. Materials Science & Engineering A, 2014, 601, 40.
52 Chen J Q, Liu X H, Yan S, et al. Jourmal of Northeastern University (Natural Science), 2019, 40(5), 42(in Chinese).
陈敬琪, 刘相华, 闫述, 等. 东北大学学报(自然科学版), 2019, 40(5), 42.
[1] 金贺荣, 张钊瑞, 韩民峰, 井士涛, 赵丁选. 表面粗糙度对热轧不锈钢复合板界面质量的影响[J]. 材料导报, 2021, 35(8): 8151-8156.
[2] 锅渺, 李莎, 赵利平, 韩建超, 王涛. 波纹辊轧制温度对镁/铝复合板界面组织及力学性能的影响[J]. 材料导报, 2020, 34(22): 22087-22092.
[3] 肖丰强, 王东坡, 胡文彬, 崔雷, 高志明, 周兰聚. 终轧温度对2205/Q235B双相不锈钢复合板组织和性能的影响[J]. 材料导报, 2020, 34(16): 16119-16124.
[4] 杨世杰, 李元东, 曹驰, 董澎源, 李嘉铭, 李明. A356覆层温度对AZ31/A356轧制复合板界面组织及力学性能的影响[J]. 材料导报, 2019, 33(14): 2397-2402.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed