Research Progress in Preparation of Ultra-thin Metal Composite Foil
LUO Chao1,2, LIU Xiao1,2, REN Zhongkai1,2, WANG Tao1,2,*, WANG Tianxiang3
1 College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, China 2 Engineering Research Center of Advanced Metal Composites Forming Technology and Equipment, Ministry of Education, Taiyuan 030024, China 3 Shanxi Taigang Stainless Steel Precision Strip Co., Ltd., Taiyuan 030024, China
Abstract: The intelligent and miniaturization development of the electronic industry, micro-robot, and other related industries has highlighted the important role of the thickness of the industrial metal composite foils in industrial products. Preparing ultra-thin metal composite foil with good mechanical properties is also important. The rolling process of ultra-thin metal composite foil is limited by the minimum rolling thickness, which increases the difficulty in preparing hete-rogeneous ultra-thin metal composite foil. At present, jet deposition, magnetron sputtering, diffusion welding, and rolling composite are the main methods of preparing metal composite foils. Among them, jet deposition and magnetron sputtering are complex and costly. The bonding strength of metal composite foils prepared by diffusion welding is low, and these foils are not conducive to large-scale production. The rolling compounding method can be divided into ‘compounding before thinning’ and ‘thinning before compounding’ rolling processes. The rolling process of ‘compounding before thinning’ conducts the subsequent thinning process based on the relatively mature rolling lamination technology of dissimilar metal medium and heavy plates. However, this process is complex and costly. The ‘thinning before compounding’ rolling process directly uses ultra-thin strips as raw material. The compounding process is relatively simple, but it has high requirements for equipment. The preparation process of ultra-thin metal composite foil is summarized in this paper, and the application of the combined bonding process is highly reviewed. The research progress of the rolling compounding method in the preparation process of ultra-thin metal composite foil is reviewed, and the future research direction of the preparation process of ultra-thin metal composite foil is forecasted.
罗超, 刘晓, 任忠凯, 王涛, 王天翔. 金属复合极薄带制备工艺研究进展[J]. 材料导报, 2023, 37(12): 20080146-6.
LUO Chao, LIU Xiao, REN Zhongkai, WANG Tao, WANG Tianxiang. Research Progress in Preparation of Ultra-thin Metal Composite Foil. Materials Reports, 2023, 37(12): 20080146-6.
1 Wang T, Li S, Ren Z K, et al. Materials Letters, 2019, 234, 79.
2 Qi Z C, Xiao H, Yu C, et al. Journal of Manufacturing Processes, 2019, 44, 133.
3 Zhang X B, Yu Y B, Liu B, et al. Journal of Alloys and Compounds, 2019, 805, 338.
4 Jovanović M T, Ilić N, Cvijović-Alagić I, et al. Transactions of Nonferrous Metals Society of China, 2017, 27(9), 1907.
5 Zhao J W, Huo M S, Ma X G, et al. Materials Science and Engineering:A, 2019, 747, 53.
6 Keife H, Shi J Y, McElwain L, et al. Journal of Materials Processing Technology, 2002, 121, 50.
7 Chen S D, Liu X H, Liu L Z. Transactions of Nonferrous Metals Society of China, 2015, 25(10), 3370.
8 Liu X, Liu X H, Song M, et al. Transactions of Nonferrous Metals Society of China, 2016, 26(2), 501.
9 Zhang J Y, Yao J J, Zeng X Y, et al. The Chinese Journal of Nonferrous Metals, 2014, 24(5), 1275(in Chinese).
张建宇, 姚金金, 曾祥勇, 等. 中国有色金属学报, 2014, 24(5), 1275.
10 Huang H J, Zhang Z W, Wang S S, et al. Journal of Shenyang University of Technology, 2009, 31 (5), 531(in Chinese).
黄宏军, 张泽伟, 王书生, 等. 沈阳工业大学学报, 2009, 31(5), 531.
11 Zhang L F, Gao R, Zhao B L, et al. Journal of Alloys and Compounds, 2020, 827, 154312.
12 Han Y, Zhang S H, Bai R, et al. International Journal of Refractory Metals and Hard Materials, 2020, 91, 105256.
13 Lin Z S, Li N, Qiu Y Q, et al. Chinese Journal of Rare Metals, 2006(S1), 68(in Chinese).
林兆森, 李娜, 邱以清, 等. 稀有金属, 2006(S1), 68.
14 Liu H, Zheng X R. Materials Reports, 2012, 26(Z1), 131 (in Chinese).
刘环, 郑晓冉. 材料导报, 2012, 26(Z1), 131.
15 Li M L, Pu C H, Jiao D H, et al. China Metalforming Equipment & Manufacturing Technology, 2013, 48(5), 83(in Chinese).
李茂林, 浦承皓, 焦殿辉, 等. 锻压装备与制造技术, 2013, 48 (5), 83.
16 Wang A H. Steel Rolling, 2011, 28(4), 42(in Chinese).
王爱华. 轧钢, 2011, 28(4), 42.
17 Zhu H F. Nonferrous Metals Processing, 2014(4), 4(in Chinese).
朱航飞. 有色金属加工, 2014(4), 4.
18 Xiao H, Liu X. Iron & Steel, 2019, 54(6), 48(in Chinese).
肖宏, 刘晓. 钢铁, 2019, 54(6), 48.
19 Liu X, Xiao H. Journal of Materials Processing Technology, 2020, 278, 116537.
20 Ren Z K, Wang T, Wang Y L, et al. Iron & Steel, 2018, 53(12), 62(in Chinese).
任忠凯, 王涛, 王跃林, 等. 钢铁, 2018, 53(12), 62.
21 Liu X H, Song M, Sun X K, et al. Journal of Mechanical Engineering, 2017, 53(10), 1 (in Chinese).
刘相华, 宋孟, 孙祥坤, 等. 机械工程学报, 2017, 53(10), 1.
22 Ren Z K, Xiao H, Liu X. Iron & Steel, 2017, 52 (8), 60(in Chinese).
任忠凯, 肖宏, 刘晓. 钢铁, 2017, 52(8), 60.
23 Zhang J G, Shi H S, Sun D S. Journal of Materials Processing Technology, 2003, 138, 357.
24 Singer A. Metallic Materials, 1970, 4(4), 246.
25 Zhang X N, Jiang Y H. Foundry Technology, 2017, 38(5), 981(in Chinese).
张昕楠, 姜伊辉. 铸造技术, 2017, 38(5), 981.
26 Chen Z H, Yan H G, Chen G, et al. Journal of Hunan University (Natural Science), 2001(5), 20(in Chinese).
陈振华, 严红革, 陈刚, 等. 湖南大学学报(自然科学版), 2001(5), 20.
27 Ning H L, Wang Y P, Huang F X, et al. Journal of Functional Materials, 2002(2), 166(in Chinese).
宁洪龙, 王一平, 黄福祥, 等. 功能材料, 2002(2), 166.
28 Peng C Q, Huang B Y. Nonferrous Metals, 2002(1), 12 (in Chinese).
彭超群, 黄伯云. 有色金属, 2002(1), 12.
29 Samal S. Powder Technology, 2020, 366, 43.
30 Tang Q, Ning F F, Fu D F, et al. Powder Metallurgy Technology, 2004 (1), 12 (in Chinese).
汤琼, 宁洪峰, 付定发, 等. 粉末冶金技术, 2004(1), 12.
31 Cao L, Zhang R B. Metallurgical Equipment, 1994(6), 8 (in Chinese).
曹羚, 张如斌. 冶金设备, 1994(6), 8.
32 Zhao X J. Synthetic Materials Aging and Application, 2020, 49 (2), 120 (in Chinese).
赵向杰. 合成材料老化与应用, 2020, 49(2), 120.
33 Kelly P J, Arnell R D. Vacuum, 2000, 56(3), 159.
34 Safi I. Cheminform, 2000, 127(2-3), 203.
35 Li F, Zhu H, Li L H, et al. Vacuum Electronics, 2011(3), 49(in Chinese).
李芬, 朱颖, 李刘合, 等. 真空电子技术, 2011(3), 49.
36 Wang J, Hao S. Technology Innovation and Application, 2015(2), 35 (in Chinese).
王俊, 郝赛. 科技创新与应用, 2015(2), 35.
37 Wang Y, Zhao X N, Dang X A, et al. Journal of Materials Engineering, 2019, 47(11), 148(in Chinese).
王瑶, 赵雪妮, 党新安, 等. 材料工程, 2019, 47(11), 148.
38 Liu Y S, He Z B, Li J, et al. Atomic Energy Science and Technology, 2014, 48(5), 955(in Chinese).
刘艳松, 何智兵, 李俊, 等. 原子能科学技术, 2014, 48(5), 955.
39 Zhang W X, Yao W, Liu Y Y, et al. Materials Reports, 2015, 29(21), 98(in Chinese).
张温馨, 姚渭, 刘莹莹, 等. 材料导报, 2015, 29(21), 98.
40 Fukaya Bobo, Auburn Taihisa, Akihiko Norita, et al. Proceed of the Fusion Meeting, 2001, 19, 334.
41 Wu H Y, Lee S, Wang J Y. Journal of Materials Processing Technology, 1998, 75(1-3), 173.
42 Wu H, Fan G H, Cui X P, et al. Materials Science and Engineering:A, 2013, 585, 439.
43 Wang T, Qi Y Y, Liu J L, et al. Journal of Harbin Institute of Technology, 2020, 52(6), 42(in Chinese).
王涛, 齐艳阳, 刘江林, 等. 哈尔滨工业大学学报, 2020, 52(6), 42.
44 Jie J C, Liu C B, Wang S H, et al. Materials Science and Technology, 2019, 35(15), 1840.
45 Elahi S A, Forouzan M R. Thin-Walled Structures, 2019, 137, 19.
46 Zheng Y W, Zhang Z H, Jiang Y B. Journal of Magnetism and Magnetic Materials, 2018, 452, 266.
47 Olexandr Grydin, Mykhailo Stolbchenko, Mirko Schaper. Procedia Engineering, 2017, 207, 1695.
48 Ji C, Huang H G, Sun J N, et al. China Mechanical Engineering, 2019, 30(15), 1873(in Chinese).
季策, 黄华贵, 孙静娜, 等. 中国机械工程, 2019, 30(15), 1873.
49 Yu Q B, Liu X H, Sun Y, et al. Scientia Sinica Technologica, 2016, 46(11), 1166(in Chinese).
于庆波, 刘相华, 孙莹, 等. 中国科学:技术科学, 2016, 46(11), 1166.
50 Battezzati L, Pappalepore P, Durbiano F, et al. Acta Materialia, 1999, 47(6), 1901.
51 Vahid Yousefi Mehr, Mohammad Reza Toroghinejad, Ahmad Rezaeian, et al. Materials Science & Engineering A, 2014, 601, 40.
52 Chen J Q, Liu X H, Yan S, et al. Jourmal of Northeastern University (Natural Science), 2019, 40(5), 42(in Chinese).
陈敬琪, 刘相华, 闫述, 等. 东北大学学报(自然科学版), 2019, 40(5), 42.