Please wait a minute...
材料导报  2022, Vol. 36 Issue (12): 21030309-7    https://doi.org/10.11896/cldb.21030309
  高分子与聚合物基复合材料 |
废弃酚醛树脂保温材料基电极材料多孔炭的制备及构效关系
苏英杰, 高丽娟, 卢振杰, 杨广, 程俊霞, 赵雪飞
辽宁科技大学化学工程学院,辽宁 鞍山 114051
The Preparation and Structure-Activity Relationship of the Electrode Material Porous Carbon Based on Waste Phenolic Resin Thermal Insulation Material
SU Yingjie, GAO Lijuan, LU Zhenjie, YANG Guang, CHENG Junxia, ZHAO Xuefei
School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051,Liaoning, China
下载:  全 文 ( PDF ) ( 11093KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 低成本高效杂原子掺杂多孔炭材料在高性能超级电容器的发展中起着至关重要的作用。酚醛树脂基泡沫保温板含有氮、氧元素,是制备高效多孔炭的“零”成本原料。本工作以废弃酚醛树脂外墙保温板为原料,采用化学活化法制备了用于超级电容器电极材料的多孔炭。结果表明,获得最优电化学性能的工艺条件为:活化剂KOH,碱炭质量比2∶1,活化温度600 ℃,活化时间2 h。该条件下制备的多孔炭的比表面积为960 m2/g,孔结构以微孔和介孔为主;XRD和Raman表征发现多孔炭石墨化程度较低,主要为无定型碳结构;XPS和FTIR检测到多孔炭含有氮、氧元素。对于多孔炭的电化学性质,以3 mol/L KOH为电解液、电压窗口为-1~0 V、电流密度为0.5 A/g时,三电极系统测试得到质量比电容为315 F/g;在4 A/g的电流密度下,对称超级电容器经过20 000圈循环后电容保持和库仑效率仍接近100%。在15 A/g的高电流密度下,对称两电极系统测试能量密度为27.1 Wh·kg-1,功率密度为7 100 W·kg-1。与其他单纯碳材料相比,废弃酚醛树脂基保温板多孔炭展示出更优异的电化学性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
苏英杰
高丽娟
卢振杰
杨广
程俊霞
赵雪飞
关键词:  酚醛树脂保温材料  多孔炭  活化剂  质量比电容  双电层电容器    
Abstract: Low-cost and efficient heteroatom-doped porous carbon materials play an important role in the development of high-performance supercapacitors. Phenolic resin based foam insulation board containing nitrogen and oxygen elements, is ‘Zero’ cost raw materials for preparing efficient porous carbon. In this work, porous carbon for electrode material of supercapacitor was prepared from waste phenolic resin insulation board by chemical activation method. The results show that the optimum conditions of electrochemical performance are as follows: KOH activator, alkali-carbon mass ratio 2∶1, activation temperature 600 ℃, activation time 2 h. The structures of porous carbon with high specific surface area of 960 m2/g are mainly micropores and mesopores under such circumstance. XRD and Raman analyses show that the graphitization degree of porous carbon is low, and its structure is mainly amorphous. What's more, through XPS and FTIR nitrogen and oxygen elements are detected in porous carbon. In the three-electrode 3 mol/L KOH aqueous solution test system, with the voltage window was -1—0 V and the current density was 0.5 A /g, the mass ratio capacitance of porous carbon can be as high as 315 F/g .Meanwhile,the capacitance retention and coulomb efficiency of the symmetric supercapacitor are still close to 100% after 20 000 cycles at the current density of 4 A/g. At the high current density of 15 A/g, the energy density of 27.1 Wh·kg-1 and the power density of 7 100 W·kg-1 were measured by the symmetric two-electrode system. Compared with other simple carbon materials, the porous carbon of waste phenolic resin insulation board shows better electrochemical performance.
Key words:  phenolic resin thermal insulation material    porous carbon    activator    mass specific capacitance    double layer capacitor
出版日期:  2022-06-25      发布日期:  2022-06-24
ZTFLH:  TQ424.1  
  TM53  
基金资助: 国家自然科学基金项目(U1361126);辽宁省自然科学基金(20180551218)
通讯作者:  gaolijuan@ustl.edu.cn   
作者简介:  苏英杰,2019年6月毕业于辽宁科技大学,获得工学学士学位,现为辽宁科技大学化学工程学院在读硕士研究生,师从高丽娟教授,主要从事于EDLC电极炭材料的制备研究。
赵雪飞,辽宁科技大学化学工程学院,教授,博士研究生导师。1982年1月毕业于鞍山钢铁学院,获得学士学位;1995年毕业于东北大学,获得工学硕士学位;2010年毕业于大连理工大学,获得工学博士学位。辽宁省金属学会焦化委员会理事,中国煤炭学会煤化工委员会委员,燃料与化工杂志编委会委员。主持完成国家自然基金(U1361126)、教育部博士点基金、辽宁省自然基金等纵向项目11项;主持横向科研项目20余项。在煤沥青基新型炭材料的产品开发及工程化领域开展了大量的研究工作,且在煤系针状焦制备的基础研究和工程化及连续化制备煤系中间相碳微球技术方面有较深的造诣。发表论文100余篇,包括Journal of Power Sources,Carbon Letters,Fuel,Energy & Fuels,《光谱学与光谱分析》等。
引用本文:    
苏英杰, 高丽娟, 卢振杰, 杨广, 程俊霞, 赵雪飞. 废弃酚醛树脂保温材料基电极材料多孔炭的制备及构效关系[J]. 材料导报, 2022, 36(12): 21030309-7.
SU Yingjie, GAO Lijuan, LU Zhenjie, YANG Guang, CHENG Junxia, ZHAO Xuefei. The Preparation and Structure-Activity Relationship of the Electrode Material Porous Carbon Based on Waste Phenolic Resin Thermal Insulation Material. Materials Reports, 2022, 36(12): 21030309-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030309  或          http://www.mater-rep.com/CN/Y2022/V36/I12/21030309
1 Li L, Hou Z X, Wang S H, et al. Ordnance Material Science and Engineering, 2016, 39(1), 114 (in Chinese).
李霖, 侯朝霞, 王少洪, 等. 兵器材料科学与工程, 2016, 39(1), 114.
2 Li J, Zhu X H. Metallic Functional Materials, 2015, 22(2), 19 (in Chinese).
李静,朱晓辉. 金属功能材料, 2015, 22(2), 19.
3 Zhai Y, Dou Y, Zhao D, et al. Advanced Materials, 2011, 23(42), 4828.
4 Hong H C, Liu J, Gan L H, et al. Journal of Xiamen University(Natural Science), 2021, 60(5),840 (in Chinese).
洪华驰, 刘健, 甘礼惠, 等. 厦门大学学报(自然科学版), 2021, 60(5),840.
5 Tian X, Ma H, Li Z, et al. Journal of Power Sources, 2017, 359, 88.
6 Li Y T, Pi Y T, Lu L M, et al. Journal of Power Sources, 2015, 299(20), 519.
7 Zuo X X, Li W S. Journal of South China Normal University(Natural Science Edition), 2005(1), 77 (in Chinese).
左晓希, 李伟善. 华南师范大学学报(自然科学版), 2005(1), 77.
8 Hu Y, Wang H, Yang L, et al. Journal of the Electrochemical Society, 2013, 160(6), H321.
9 Zhao X, Gnanaseelan M, Jehnichen D, et al. Journal of Materials Science, 2019, 54(15), 10809.
10 Zhang G, Song Y, Zhang H, et al. Advanced Functional Materials, 2016, 26(18), 3012.
11 Liang J, Wen L, Cheng H M,et al. Journal of Electrochemistry, 2015, 21(6), 505 (in Chinese).
梁骥, 闻雷, 成会明, 等. 电化学, 2015, 21(6), 505.
12 Parlak O, Mishra Y K, Grigoriev A, et al. Nano Energy, 2017, 34, 570.
13 Wei F, He X, Zhang H, et al. Journal of Power Sources, 2019, 428(15), 8.
14 Tan M H, Ai P P, Li S B, et al. Chemical Engineering, 2013, 41(9), 15 (in Chinese).
谭明慧, 艾培培, 李士斌, 等. 化学工程, 2013, 41(9), 15.
15 Xu W J, Qiu D P, Liu S Q, et al. Journal of Inorganic Materials, 2019, 34(6), 625 (in Chinese).
许伟佳, 邱大平, 刘诗强, 等. 无机材料学报, 2019, 34(6), 625.
16 Mora E, Blanco C, Pajares J, et al. Journal of Colloid and Interface Science, 2006, 298(1), 341.
17 Moyo B, Momodu D, Fa Sakin O, et al. Journal of Materials Science, 2018, 53(7), 5229.
18 Zhou W, Lei S, Sun S, et al. Journal Power Sources, 2018, 402, 203.
19 Tong Y X, Li X M, Xie L J, et al. Energy Storage Mater, 2016, 3, 140.
20 Deng J, Xiong T Y, Xu F, et al. Green Chemistry, 2015, 17(7), 4053.
21 Fan X M, Yu C, Yang J, et al. Advanced Energy Materials, 2015, 5(7), 1401761.
[1] 曹敏, 邓雨希, 全鹏, 徐康, 杨喜, 李贤军. 木基多孔炭/铁氧体复合吸波材料的制备与性能表征[J]. 材料导报, 2021, 35(10): 10029-10035.
[2] 孙宏宇, 高静怡, 潘超. 蒲公英基三维分级多孔炭的制备及电化学性能[J]. 材料导报, 2020, 34(4): 4007-4012.
[3] 胡丙升, 王宏, 宋俊超, 魏亮, 岳世松, 贾金鑫, 史长亮, 杨蕾. 煤系高岭土中残留炭的分离回收与材料化利用研究[J]. 材料导报, 2020, 34(24): 24068-24073.
[4] 黄凯兵, 杨秀文, 王智健, 姚异渊. 基于四羟甲基甘脲前驱体的新型含氮富微孔活性炭制备及其性能研究[J]. 《材料导报》期刊社, 2017, 31(4): 30-35.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed