Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 540-549    
  高分子与聚合物基复合材料 |
纳米流体导热介质研究进展
贾东, 蔡淑红, 李献强, 郝文静, 刘波涛, 谭凯锋, 王峰
中国船舶集团有限公司第七一八研究所,邯郸 056027
Research Progress of Nanofluid Heat-conducting Media
JIA Dong, CAI Shuhong, LI Xianqiang, HAO Wenjing, LIU Botao, TAN Kaifeng, WANG Feng
The 718th Research Institute of China State Shipbuilding Corporation Limited, Handan 056027, China
下载:  全 文 ( PDF ) ( 2627KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,随着工业技术的发展,能源、化工、汽车、太阳能集热等多个领域对高效换热技术的要求逐渐提高。设备轻量化、微型化发展要求体积压缩情况下仍保证足够的换热能力,因此正确选用导热介质成为必然。传统的导热介质如水、乙二醇、导热油等的导热系数偏低,换热能力难以满足生产生活要求。纳米流体因其增强的导热能力而受到广泛的关注。大力发展纳米流体强化传热技术对提高资源利用率、节能减排具有重要意义。国内外已逐渐对该技术展开大量研究,本文根据最新研究进展,对纳米流体“制备-性能-机理-应用”的全过程进行归纳总结,重点介绍了纳米流体稳定性、基础热物性以及传热特性的研究情况。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贾东
蔡淑红
李献强
郝文静
刘波涛
谭凯锋
王峰
关键词:  纳米流体  稳定性  导热系数  粘度  对流换热    
Abstract: In recent years, with the development of industrial technology,the requirements for efficient heat transfer technology are also gradually increasing in energy, chemical, automobile and solar collector fields. The development of lightweight and miniaturization of equipment requires sufficient heat transfer capacity under the condition of volume compression. Therefore, the correct selection of heat transfer medium has become an inevitable choice. Traditional heat transfer media such as water, ethylene glycol and heat transfer oil show low thermal conductivity, thus the heat transfer capacity can’t meet the requirements of production and life. Nanofluids have attracted extensive attention due to their enhanced thermal conductivity. It is of great significance for improving resource utilization, energy saving and emission reduction to vigorously develop nanofluid enhanced heat transfer technology. A large number of studies on this technology have been gradually carried out at home and abroad. Based on the latest research progress, the whole process of “preparation-performance-mechanism-application” of nanofluids is summarized in this paper, with emphasis on the research on the stability, basic thermal physical properties and heat transfer characteristics of nanofluids.
Key words:  nanofluids    stability    thermal conductivity    viscosity    convection heat transfer
                    发布日期:  2021-12-09
ZTFLH:  TB383  
  TK124  
通讯作者:  wf0310@sina.com   
作者简介:  贾东,2020年6月毕业于天津大学,获得工学硕士学位。目前在中国船舶集团公司第七一八研究所王峰高级工程师的指导下进行研究,研究领域为纳米材料及强化传热技术。
王峰,中国船舶集团公司第七一八研究所高级工程师。长期从事换热流体材料研究。
引用本文:    
贾东, 蔡淑红, 李献强, 郝文静, 刘波涛, 谭凯锋, 王峰. 纳米流体导热介质研究进展[J]. 材料导报, 2021, 35(z2): 540-549.
JIA Dong, CAI Shuhong, LI Xianqiang, HAO Wenjing, LIU Botao, TAN Kaifeng, WANG Feng. Research Progress of Nanofluid Heat-conducting Media. Materials Reports, 2021, 35(z2): 540-549.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/540
1 Wen D, Lin G, Vafaei S, et al. Particuology, 2009, 7(2), 141.
2 Moreira T A, Moreira D C, Ribatski G. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40(6), 303.
3 Lee S, Choi S U S, Li S, et al. Journal of Heat Transfer, 1999, 121(2), 280.
4 Murshed S M S, Leong K C, Yang C. International Journal of Thermal Sciences, 2005, 44(4), 367.
5 Li X F, Zhu D S, Wang X J, et al. Thermochimica Acta, 2008, 469(1-2), 98.
6 Timofeeva E V, Routbort J L, Singh D. Journal of Applied Physics, 2009, 106(1), 14304.
7 Kleinstreuer C, Feng Y. Nanoscale Research Letters, 2011, 6(1), 1.
8 Yang L, Du K, Zhang X S, et al. Applied Thermal Engineering, 2011, 31(17-18), 3643.
9 Jang S P, Choi S U S. Applied Physics Letters, 2004, 84(21), 4316.
10 Zafarani-Moattar M T, Majdan-Cegincara R. Fluid Phase Equilibria, 2013, 354, 102.
11 Pantzali M N, Kanaris A G, Antoniadis K D, et al. International Journal of Heat and Fluid Flow, 2009, 30(4), 691.
12 Babita, Sharma S K, Mital G S. Experimental Thermal & Fluid Science, 2016, 79, 202.
13 Wu D, Zhu H, Wang L, et al. Current Nanoscience, 2009, 5(1), 103.
14 Yu W, Xie H. Journal of Nanomaterials, 2011, 2012, 1.
15 Sidik N A C, Mohammed H A, Alawi O A, et al. International Communications in Heat and Mass Transfer, 2014, 54, 115.
16 Ghadimi A, Saidur R, Metselaar H S C. International Journal of Heat and Mass Transfer, 2011, 54(17-18), 4051.
17 Chang H, Jwo C S, Fan P S, et al. The International Journal of Advanced Manufacturing Technology, 2007, 34(3-4), 300.
18 Lee G, Kim C K, Lee M K, et al. Thermochimica Acta, 2012, 542, 24.
19 Wang X, Mujumdar A S. International Journal of Thermal Sciences, 2007, 46(1), 1.
20 Li Y, Zhou J, Tung S, et al. Powder Technology, 2009, 196(2), 89.
21 Witharana S, Palabiyik I, Musina Z, et al. Powder Technology, 2013, 239, 72.
22 Li X, Zhu D, Wang X. Journal of Colloid and Interface Science, 2007, 310(2), 456.
23 Nasiri A, Shariaty-Niasar M, Rashidi A, et al. Experimental Thermal and Fluid Science, 2011, 35(4), 717.
24 Srinivas V, Moorthy C V K N, Dedeepya V, et al. Heat and Mass Transfer, 2016, 52(4), 701.
25 Hwang Y, Lee J K, Lee C H, et al. Thermochimica Acta, 2007, 455(1-2), 70.
26 Wang X, Li X, Yang S. Energy & Fuels, 2009, 23(5), 2684.
27 Kamatchi R, Venkatachalapathy S. International Journal of Thermal Sciences, 2015, 87, 228.
28 Mehrali M, Sadeghinezhad E, Tahan Latibari S, et al. Journal of Mate-rials Science, 2014, 49(20), 7156.
29 Wei B, Zou C, Li X. International Journal of Heat and Mass Transfer, 2017, 104, 537.
30 Das P K, Islam N, Santra A K, et al. Journal of Molecular Liquids, 2017,237, 304.
31 Asadi A, Asadi M, Siahmargoi M, et al. International Journal of Heat and Mass Transfer, 2017, 108, 191.
32 Rashmi W, Ismail A F, Sopyan I, et al. Journal of Experimental Nanoscience, 2011, 6(6), 567.
33 Zareei M, Yoozbashizadeh H, Madaah Hosseini H R. Journal of Thermal Analysis and Calorimetry, 2019, 135(2), 1185.
34 Yu W, Xie H, Chen L, et al. Powder Technology, 2010, 197(3), 218.
35 Yu W, Xie H, Chen L, et al. Nanoscale Research Letters, 2009, 4(5), 465.
36 Kamalgharibi M, Hormozi F, Zamzamian S A H, et al. Heat and Mass Transfer, 2016, 52(1), 55.
37 Shah S N A, Shahabuddin S, Sabri M F M, et al. International Journal of Heat and Mass Transfer, 2020, 150, 118981.
38 Sharma P, Baek I, Cho T, et al. Powder Technology, 2011, 208(1), 7.
39 Kumaresan V, Velraj R. Thermochimica Acta, 2012, 545, 180.
40 Li H, He Y, Hu Y, et al. International Journal of Heat and Mass Transfer, 2015, 91, 385.
41 Michael M, Zagabathuni A, Ghosh S, et al. Journal of Thermal Analysis and Calorimetry, 2019, 137(2), 369.
42 Leong K Y, Hanafi N M, Sohaimi R M. Thermal Science, 2016, 20(2), 429.
43 Witharana S, Hodges C, Xu D, et al. Journal of Nanoparticle Research, 2012, 14(5), 1.
44 Palabiyik I, Musina Z, Witharana S, et al. Journal of Nanoparticle Research, 2011, 13(10), 5049.
45 Asadi A, Alarifi I M. Scientific Reports, 2020, 10, 15182.
46 Asadi A, Alarifi I M, Ali V, et al. Ultrasonics Sonochemistry, 2019, 58, 104639.
47 Mahbubul I M, Chong T H, Khaleduzzaman S S, et al. Industrial & Engineering Chemistry Research, 2014, 53(16), 6677.
48 Lee J, Hwang K S, Jang S P, et al. International Journal of Heat and Mass Transfer, 2008, 51(11-12), 2651.
49 Tajik B, Abbassi A, Saffar-Avval M, et al. Powder Technology, 2012, 217, 171.
50 Silambarasan M, Manikandan S, Rajan K S. International Journal of Heat and Mass Transfer, 2012, 55(25-26), 7991.
51 Fadhillahanafi N M, Leong K Y, Risby M S.International Journal of Automotive and Mechanical Engineering, 2013, 8, 1376.
52 Chung S J, Leonard J P, Nettleship I, et al. Powder Technology, 2009, 194(1-2), 75.
53 Seeman N C. Trends in Biotechnology, 1999, 17(11), 437.
54 Zhang H, Qing S, Zhai Y, et al. Powder Technology, 2021, 377, 748.
55 Cacua K, Ordoñez F, Zapata C, et al. Colloids and Surfaces A, Physicochemical and Engineering Aspects, 2019, 583, 123960.
56 Wamkam C T, Opoku M K, Hong H, et al. Journal of Applied Physics, 2011, 109(2), 24305.
57 Yousefi T, Shojaeizadeh E, Veysi F, et al. Solar Energy, 2012, 86(2), 771.
58 Bashirnezhad K, Rashidi M M, Yang Z, et al. Journal of Thermal Analysis and Calorimetry, 2015, 122(2), 863.
59 Xie H, Yu W, Chen W. Journal of experimental nanoscience, 2010, 5(5), 463.
60 Murshed S M S, Leong K C, Yang C. Applied Thermal Engineering, 2008, 28(17-18), 2109.
61 Jang S P, Choi S U S. Applied Physics Letters, 2004, 84(21), 4316.
62 Eapen J, Rusconi R, Piazza R, et al. Journal of Heat Transfer, 2008, 132(10), 369.
63 Azmi W H, Hamid K A, Mamat R, et al. Applied Thermal Engineering, 2016, 106, 1190.
64 Guo Y, Zhang T, Zhang D, et al. International Journal of Heat and Mass Transfer, 2018, 117, 280.
65 Suganthi K S, Leela V V, Rajan K S. Applied Energy, 2014, 135, 548.
66 Ouikhalfan M, Labihi A, Belaqziz M, et al. Journal of Dispersion Science and Technology, 2020, 41(3), 374.
67 Wen D, Ding Y. International Journal of Heat and Mass Transfer, 2004, 47(24), 5181.
68 Ding Y, Alias H, Wen D, et al. International Journal of Heat and Mass Transfer, 2006, 49(1-2), 240.
69 Selvam C, Muhammed I E C, Lal D M, et al. Experimental Thermal and Fluid Science, 2016, 77, 188.
70 He Y, Jin Y, Chen H, et al. International Journal of Heat and Mass Transfer, 2007, 50(11-12), 2272.
71 Hwang K S, Jang S P, Choi S U S. International Journal of Heat and Mass Transfer, 2009, 52(1-2), 193.
72 Mehdi B, Seyed M H. Thermochimica Acta, 2013, 574, 47.
73 Yu W, Xie H, Li Y, et al. Powder Technology, 2012, 230, 14.
74 Xuan Y, Li Q. Journal of Heat Transfer, 2003, 125, 151.
75 Pak B C, Cho Y I. Experimental Heat Transfer, 1998, 11(2), 151.
76 Naraki M, Peyghambarzadeh S M, Hashemabadi S H, et al. International Journal of Thermal Sciences, 2013, 66, 82.
77 Heris S, Shokrgozar M, Poorpharhang S, et al. Journal of Dispersion Science and Technology, 2014, 35(5), 677.
78 Salamon V, Senthil K D, Thirumalini S. IOP Conference Series, Materials Science and Engineering, 2017, 225, 12101.
79 Arora N, Gupta M. Renewable and Sustainable Energy Reviews, 2020, 134, 110242.
80 Pang C, Jung J, Kang Y T. International Journal of Heat and Mass Transfer, 2014, 72, 392.
81 Keblinski P, Phillpot S R, Choi S U S, et al. International Journal of Heat and Mass Transfer, 2002, 45, 855.
82 Shukla R, Dhir V. In: ASME 2005 Summer Heat Transfer Conference. San Francisco, USA, 2005, pp.449.
83 Gao J W, Zheng R T, Ohtani H, et al. Nano Letters, 2009, 9(12), 4128.
84 Evans W, Prasher R, Fish J. International Journal of Heat and Mass Transfer, 2008, 51, 1431.
85 Das P K. Journal of Molecular Liquids, 2017, 240, 420.
86 Singh V, Gupta M. Energy Conversion and Management, 2016, 123, 290.
87 Buongiorno J. Transactions of the ASME, 2006, 128, 240.
88 Hwang K S, Jang S P, Choi S U S. International Journal of Heat and Mass Transfer, 2009, 52, 193.
89 Wen D, Ding Y. Microfluid Nanofluid, 2005, 1, 183.
90 Ali H M, Ali H, Liaquat H, et al. Energy, 2015, 84, 317.
91 Chen J, Jia J. Materials Research Innovations, 2017, 21(3), 177.
92 Kole M, Dey T K. Journal of Physics D:Applied Physics, 2010, 43(31), 315501.
93 Sahoo R R, Sarkar J. Heat and Mass Transfer, 2017, 53(6), 1923.
94 Hussein A M, Bakar R A, Kadirgama K, et al. International Communications in Heat and Mass Transfer, 2014, 53, 195.
95 Mital M. Applied Thermal Engineering, 2013, 52(2), 321.
96 Mohammed H A, Gunnasegaran P, Shuaib N H. International Communications in Heat and Mass Transfer, 2011, 38(6), 767.
97 Farajollahi B, Etemad S G, Hojjat M. International Journal of Heat and Mass Transfer, 2010, 53(1-3), 12.
98 Chein R, Huang G. Applied Thermal Engineering, 2005, 25(17-18), 3104.
99 Chein R, Chuang J. International Journal of Thermal Sciences, 2007, 46(1), 57.
100 Mahian O, Kianifar A, Kalogirou S A, et al. International Journal of Heat and Mass Transfer, 2013, 57(2), 582.
101 Tyagi H, Phelan P, Prasher R. Journal of Solar Energy Engineering, 2009, 131(4), 143.
102 Yousefi T, Veysi F, Shojaeizadeh E, et al. Renewable Energy, 2012, 39(1), 293.
103 Taylor R A, Phelan P E, Otanicar T P, et al. Journal of Renewable and Sustainable Energy, 2011, 3(2), 23104.
104 Taylor R A, Phelan P E, Otanicar T P, et al. Nanoscale Research Letters, 2011, 6(1), 225.
[1] 欧珊, 牟自豪, 林涛, 李瑶, 冯威, 刘文龙. 两步法制备碳化钛薄膜及其电容性能[J]. 材料导报, 2021, 35(z2): 18-21.
[2] 罗祥, 王玲, 王振地. 混凝土中气泡的产生与发展:机理和影响因素[J]. 材料导报, 2021, 35(z2): 213-217.
[3] 李书进, 刘源涛, 厉见芬, 盛炎民. 盾构废弃泥沙再生制备高性能注浆材料的试验研究[J]. 材料导报, 2021, 35(z2): 275-278.
[4] 鞠帅威, 李艳辉, 张伟. 软磁性Co基块体非晶合金的研究进展[J]. 材料导报, 2021, 35(z2): 318-324.
[5] 李崇智, 孙浩, 叶国林, 张艺劼. 酸化拟薄水铝石改性镍钢渣复合掺合料的效果研究[J]. 材料导报, 2021, 35(z2): 460-464.
[6] 马砺, 师童, 雷燕飞, 刘西西, 王昕, 于文聪, 何铖茂. 含Sb2O3/ZHS的PVC复合材料阻燃抑烟性能研究[J]. 材料导报, 2021, 35(z2): 529-534.
[7] 范翠红, 秦会斌, 周继军. 酚醛树脂在铝基板上的应用[J]. 材料导报, 2021, 35(z2): 589-592.
[8] 刘子甄, 金欣, 王闻宇, 牛家嵘. 基于分子结构设计的高性能聚酰亚胺的研究进展[J]. 材料导报, 2021, 35(z2): 600-611.
[9] 孙鹏飞, 吕平, 黄微波, 张锐, 方志强, 桑英杰. 喷涂抗爆型聚脲钢筋混凝土板抗爆性能研究[J]. 材料导报, 2021, 35(z2): 642-648.
[10] 刘刚, 贾莉斯, 陈颖, 汪嘉城, 莫松平. SiO2-H2O纳米悬浮液的导热及其机理分析[J]. 材料导报, 2021, 35(Z1): 116-120.
[11] 罗遥凌, 高育欣, 闫欣宜, 谢昱昊, 毕耀. 热养护UHPC后期水稳定性[J]. 材料导报, 2021, 35(Z1): 242-246.
[12] 莫东鸣. 高Prandtl数双层流体的热毛细对流数值模拟[J]. 材料导报, 2021, 35(Z1): 302-305.
[13] 郭翠霞, 吴张永, 王航, 朱启晨, 邹应辉. 乳液基碳化硅纳米工作液的沉降稳定性、流变性与介电性[J]. 材料导报, 2021, 35(8): 8028-8033.
[14] 张鹤, 张会丰, 郑婷婷, 赵富春, 廖双泉. 月桂酸铵对浓缩天然胶乳贮存稳定性及硫化胶性能的影响[J]. 材料导报, 2021, 35(8): 8184-8190.
[15] 张金才, 王志英, 程芳琴. 固废基无机纤维的研究进展[J]. 材料导报, 2021, 35(7): 7019-7026.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed