Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 529-534    
  高分子与聚合物基复合材料 |
含Sb2O3/ZHS的PVC复合材料阻燃抑烟性能研究
马砺1, 师童1, 雷燕飞2, 刘西西1, 王昕1, 于文聪1, 何铖茂1
1 西安科技大学安全科学与工程学院,西安 710054
2 汕头市潮阳区应急管理局,汕头 515000
Effect of Sb2O3/ZHS on Flame Retardancy Properties in PVC Composite
MA Li1, SHI Tong1, LEI Yanfei2, LIU Xixi1, WANG Xin1, YU Wencong1, HE Chengmao1
1 College of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
2 Shantou Chaoyang District Emergency Management Bureau, Shantou 515000, China
下载:  全 文 ( PDF ) ( 3040KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 聚氯乙烯(PVC)中添加增塑剂和稳定剂易致材料阻燃性能下降。本文将阻燃剂三氧化二锑(Sb2O3)及羟基锡酸锌(ZHS)添加至PVC复合材料中,研究其阻燃抑烟性能。利用电子万能试验机、极限氧指数仪(LOI)、锥形量热仪及热重分析仪(TG)研究PVC复合材料力学性能、阻燃抑烟性能及热稳定性。结果表明:Sb2O3/ZHS总添加量为6wt%且质量比为1∶2的PVC复合材料拉伸强度与断裂伸长率与原样相比分别提升了13.01%、10.90%。含Sb2O3/ZHS的PVC复合材料阻燃抑烟性能得到提升;其中总添加量为12wt%且质量比为1∶2的PVC复合材料LOI值可达30.8%,与原样相比其热释放速率峰值(PHRR)与总热释放量(THR)下降了77.1%、61.7%,烟释放速率峰值(PSPR)与总烟释放量(TSP)下降了46.7%、10.4%。Sb2O3/ZHS提高了PVC复合材料的热稳定性,Sb2O3/ZHS总添加量为12wt%且质量比为1∶2的PVC复合材料残炭率与原样相比提升了139.7%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马砺
师童
雷燕飞
刘西西
王昕
于文聪
何铖茂
关键词:  PVC复合材料  阻燃  抑烟  热稳定性    
Abstract: Plasticizers and stabilizers in Polyvinyl chloride (PVC) tend to reduce the flame retardancy of the material. In this paper, the flame retardant antimony trioxide (Sb2O3) and zinc hydroxystannate (ZHS) are added to PVC composite to study their flame retardant and smoke suppression properties. The mechanical properties, flame retardant and smoke inhibition properties, thermal stability of PVC composite were investigated by electronic universal testing machine, limiting oxygen index (LOI), cone calorimeter and TG, respectively. The results revealed that the tensile strength and elongation at break of PVC composite with Sb2O3/ZHS total addition of 6wt% and mass ratio of 1,2 increased by 13.01% and 10.90% compared with the original sample. And the flame retardant and smoke inhibition properties of PVC composite with Sb2O3/ZHS has been improved. When the Sb2O3/ZHS addition amount was 12wt% and the mass ratio of Sb2O3 to ZHS was 1,2, the LOI value of PVC composite can reach 30.8%; Its peak heat release rate (PHRR) and total heat release (THR) decreased by 77.1% and 61.7% compared with the original sample, peak smoke release rate (PSPR) and total smoke release (TSP) dropped by 46.7% and 10.4%. Sb2O3/ZHS can improve the thermal stability of PVC composites. The carbon residue rate of PVC composite with Sb2O3/ZHS total addition of 12wt% and mass ratio of 1,2 increased by 139.7% compared with original sample.
Key words:  polyvinyl chloride composite material    flame retardant    smoke inhibition    thermal stability
                    发布日期:  2021-12-09
ZTFLH:  TQ323.3  
基金资助: 国家重点研发项目(2018YFC0808104)
通讯作者:  mal@xust.edu.cn   
作者简介:  马砺,西安科技大学教授,博士研究生导师,美国伍斯特理工学院高级访问学者。中国科协求是杰出青年成果转化奖、孙越崎青年科技奖、陕西青年科技奖、全国煤炭“五四”青年奖章等荣誉。主要研究方向为火灾防治与消防救援,带领团队开展火灾科学基础、火灾感知与智慧消防、火灾防治新技术与消防救援研究。主持国家重点研发计划课题、国家自然科学基金等国家级项目 10 余项,获得国家科学技术进步二等奖 1 项 ,省部级科技进步奖 30 余项,发明专利 30 余项,出版著作 5 部,发表学术论文 100 余篇,其中 SCI、EI 等收录20 余篇。
师童,西安科技大学硕士研究生,主要从事火灾安全防治技术方面研究。
引用本文:    
马砺, 师童, 雷燕飞, 刘西西, 王昕, 于文聪, 何铖茂. 含Sb2O3/ZHS的PVC复合材料阻燃抑烟性能研究[J]. 材料导报, 2021, 35(z2): 529-534.
MA Li, SHI Tong, LEI Yanfei, LIU Xixi, WANG Xin, YU Wencong, HE Chengmao. Effect of Sb2O3/ZHS on Flame Retardancy Properties in PVC Composite. Materials Reports, 2021, 35(z2): 529-534.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/529
1 蒋丹枫, 王国辉, 李婷婷, 等. 材料导报, 2017, 31(6), 56.
2 胡伟东, 赵贺, 焦运红, 等. 复合材料学报, 2019, 36(9), 2067.
3 黄昱臻, 徐建平, 陆文文, 等. 高分子材料科学与工程, 2019, 35(9), 74.
4 尚松川, 杨保俊, 张睿辰, 等. 复合材料学报, 2017, 34(8), 1667.
5 张宁, 郭强. 高分子材料科学与工程, 2014, 30(5), 81.
6 He H, Li K, Jian W, et al. Materials and Design, 2011, 32(8-9), 4521.
7 Zhao L, Zhang Y, Yang M, et al. Powder Technology, 2016, 288, 184.
8 张硕. 材料导报, 2020, 34(S2), 1091.
9 Guermazi N, Haddar N, Elleuch K, et al. Polymer Composites, 2016, 37(7), 2171.
10 Abd A. International Journal of Engineering and Technology, 2014, 3(4), 545.
11 Fang W, Pan S, Zhang P, et al. Fibers and Polymers, 2018, 19(5), 1057.
12 徐建林, 周生刚, 牛磊, 等. 材料工程, 2016, 44(8), 64.
13 Gao T T, Chen L C, Li Z W, et al. Nanoscale Research Letters, 2016, 613, 113.
14 Pmam A, Obm B, Gpb B, et al. Journal of Materials Research and Technology, 2019, 8(2), 1915.
15 Yang L, Shi C L. Procedia Engineering, 2018, 211, 901.
16 Jia P, Feng G, Bo C, et al. Journal of Industrial and Engineering Chemi-stry, 2017, 11(1), 192.
17 柳素景, 丁新波, 韩建. 纺织学报, 2015, 36(10), 102.
18 Li Y, Lv L, Wang W, et al. Polymer, 2020, 190, 122198.
19 Teotia M, Verma A, Akitsu T, et al. Journal of Scientific and Industrial Research, 2017, 76(7), 438.
20 Qu H Q, Wu W H, Zheng Y J, et al. Fire Safety Journal, 2011, 46(7), 462.
[1] 鞠帅威, 李艳辉, 张伟. 软磁性Co基块体非晶合金的研究进展[J]. 材料导报, 2021, 35(z2): 318-324.
[2] 侯鹏程, 王永亮, 韩志东, 王春锋. 聚碳硅烷协效氢氧化镁阻燃聚乙烯复合材料的残炭结构演变[J]. 材料导报, 2021, 35(z2): 525-528.
[3] 刘子甄, 金欣, 王闻宇, 牛家嵘. 基于分子结构设计的高性能聚酰亚胺的研究进展[J]. 材料导报, 2021, 35(z2): 600-611.
[4] 孙鹏飞, 吕平, 黄微波, 张锐, 方志强, 桑英杰. 喷涂抗爆型聚脲钢筋混凝土板抗爆性能研究[J]. 材料导报, 2021, 35(z2): 642-648.
[5] 王小霞, 王勇, 张娟. 含磷低聚倍半硅氧烷及其阻燃应用的研究进展[J]. 材料导报, 2021, 35(Z1): 552-559.
[6] 孙吉, 何文涛. 三氧化二锑对尼龙阻燃性能的影响研究发展动态[J]. 材料导报, 2021, 35(Z1): 560-565.
[7] 解琳, 何文涛, 高京. 聚膦腈微纳米材料的制备及应用[J]. 材料导报, 2021, 35(Z1): 578-585.
[8] 姜鹏程, 王周福, 王玺堂, 刘浩, 马妍. 不同气氛下类石墨相氮化碳的合成及热稳定性能[J]. 材料导报, 2021, 35(6): 6048-6053.
[9] 高君华, 黄浩, 曾冲, 郑瑞伦. 孔隙率对传感器多孔电极材料导电性能的影响[J]. 材料导报, 2021, 35(18): 18018-18023.
[10] 康兴隆, 鲁哲宏, 柳妍, 冯伟丽, 刘保英, 房晓敏, 丁涛. 改性纳米二氧化硅协效二乙基次磷酸铝阻燃尼龙6[J]. 材料导报, 2021, 35(18): 18047-18051.
[11] 王亚楠, 曹凤香, 王永锋, 曹静, 李兆, 吴坤尧. 玻璃纤维增强硼酸酯改性酚醛树脂复合材料的摩擦学性能研究[J]. 材料导报, 2021, 35(18): 18210-18215.
[12] 李过, 孙耀宁, 王国建, 代礼葵. 不同环境因素作用下玻纤/环氧乙烯基酯复合材料的冲蚀行为[J]. 材料导报, 2021, 35(16): 16160-16165.
[13] 唐启恒, 郭文静. 三聚氰胺聚磷酸盐/次磷酸铝对高密度纤维板阻燃和力学性能的影响[J]. 材料导报, 2021, 35(16): 16166-16171.
[14] 林绍铃, 黄初, 赵小敏, 陈国华. 石墨烯/黑磷纳米复合粒子对环氧树脂阻燃与热稳定性能的影响[J]. 材料导报, 2021, 35(10): 10184-10188.
[15] 范娟娟, 闵样, 杨吉, 张永航, 班大明. 一种具有良好抑烟性能的磷杂菲阻燃剂在环氧树脂中的应用研究[J]. 材料导报, 2021, 35(10): 10189-10196.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed