Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 483-487    
  高分子与聚合物基复合材料 |
介孔SiO2负载有机基二元定型复合相变储能材料的性能研究
李洁1, 张佳2, 付明琴1, 许立强1, 胡其志1,3, 李小鹏1, 余萃1
1 武昌工学院城市建设学院,武汉 430065
2 湖北工业大学生物工程与食品学院,武汉 430068
3 湖北工业大学土木建筑与环境学院,武汉 430068
Study on the Performance of Organic Base Binary Stereotyped Composite Phase Change Material Supported by Mesoporous SiO2
LI Jie1, ZHANG Jia2, FU Mingqin1, XU Liqiang1, HU Qizhi1,3, LI Xiaopeng1, YU Cui1
1 School of Urban Construction, Wuchang Institute of Technology, Wuhan 430065, China
2 School of Biological Engineering and Food Science, Hubei University of Technology,Wuhan 430068, China
3 School of Civil Engineering, Architecture and Environment, Hubei University of Technology,Wuhan 430068, China
下载:  全 文 ( PDF ) ( 2691KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 能源是人类赖以生存的基础,随着人口增长,生产力的提高,人们对能源的需求量日益增多。而目前人类所利用的能源大多为不可再生的,能源问题逐渐浮现在人类社会中,成为人类未来发展的首要难题。从而使人们把目光转向到能量保存的方法上,研究保存能量的方法,减少能源在释放能量时的热量损失,从而提高新、旧能源的利用率,而这种保存能量的方法所使用的材料,即为储能材料。   为了探索性能更加优异的相变储能材料,本研究选用二元有机酸复合材料为相变芯材,癸酸/硬脂酸(CA-SA),并采用溶胶凝胶法对相变芯材进行包覆处理。其中,对CA-SA采用介孔SiO2进行包覆,介孔SiO2主要以正硅酸四乙酯(TEOS)为原料,十六烷基三甲基溴化铵(CTAB)为模板剂,按照不同配比获得不同形貌结构的介孔SiO2小球。然后以介孔SiO2作为载体,CA-SA为相变芯材,介孔SiO2通过界面作用和毛细作用将相变芯材吸附在微球中,构建介孔SiO2负载型CA-SA定型复合相变储能材料。同时,探究了具有不同孔结构的介孔SiO2,以及不同质量比的CA-SA对复合相变材料储能性能的影响。   介孔SiO2负载二元有机酸CA-SA复合材料,得到了负载量为60%的定型复合相变储能材料。经过热性能分析,结果证明了该复合材料有较大的相变潜热,适宜的相变温度,并在适用温度内具有良好的热稳定性。与此同时,研究结果明显地发现,介孔SiO2对该复合相变材料的热性能及稳定性影响较小,其主要作为载体,并在一定程度上实现了对复合相变储能材料的有效封装作用。然而,有机酸的质量比却对负载型复合相变储能材料的热性能及稳定性有较大影响。最后,研究进一步表明,该材料经过50次循环热测试后,仍能够表现出良好的热性能稳定性。介孔材料负载型有机基二元复合相变储能材料为研发其他性能优异、储能效果更好的新型相变储能材料提供良好的理论基础,并有望成为在特殊应用领域的新型可实际利用材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李洁
张佳
付明琴
许立强
胡其志
李小鹏
余萃
关键词:  介孔二氧化硅  溶胶凝胶法  二元脂肪酸  相变储能材料  定型复合    
Abstract: Energy is the basis for human survival, demand for energy is increasing day by day with the growth of population and the improvement of productivity. At present, most of the energy used by human beings is non-renewable, the energy problem has gradually emerged in human society, and become the primary problem of human development in the future. Therefore, in order to improve the utilization rate of new and old energy, to reduce the heat loss of energy in the release of energy, the method of energy conservation has gradually been studied right now, and the material used in this method of energy conservation, namely, energy storage materials. In this study, in order to explore a phase change energy storage material with better performance, binary organic acid composite material was selected as the phase change core material, capric acid/stearic acid (CA-SA), and the phase change core material was enwrapped using sol-gel method. Among them, CA-SA was coated with mesoporous silica. Mesoporous silica spheres was obtained with with different morphology and structure using tetraethyl orthosilicate (TEOS)was used as raw material, cetyltrimethylammonium bromide (CTAB) was used as template agent according to different ratios. And then, mesoporous silica was used as the carrier and CA-SA was used as the phase change core material. The stereotyped CA-SA composite materials supported by mesoporous silica was formed through nterfacial action and capillary action with mesoporous silica carrier and phase change core material CA-SA. At the same time, the effects of mesoporous silica with different pore structures and different mass ratios of CA-SA on the energy storage performance of PCM composites were investigated. The stereotyped composite phase change energy storage materials with loading capacity of 60% were obtained through supported by he mesoporous SiO2 to binary organic acid CA-SA composites.The results of thermal property analysis was showed that the composite had a large latent heat of phase transition, a suitable temperature of phase transition, and excellent thermal stability at the suitable temperature. At the same time, the results were clearly show that mesoporous silica had little effect on the thermal properties and stability of the composite phase change materia-ls, and to a certain extent, it was realized the effective encapsulation of the composite phase change energy storage materials as a carrier. Howe-ver, the mass ratio of organic acids had a great influence on the thermal properties and stability of the supported phase change materials. Finally, the study was further showed that the material could still show wonderful thermal stability after 50 cycles of thermal tests. The mesoporous material supported organic matrix binary composite phase change energy storage materials can provide a good theoretical basis for the research and development of other new phase change energy storage materials with excellent performance and better energy storage effect, and was expected to become a new practical material in special application fields.
Key words:  mesoporous silica    sol-gel method    binary aliphatic acid    phase-change energy storage material    stereotyped composite
                    发布日期:  2021-12-09
ZTFLH:  TB34  
基金资助: 湖北省高等学校优秀中青年科研创新团队(2018T02);武昌工学院学生校级科研项目(2019XSZ02)
通讯作者:  li18771025754@163.com   
作者简介:  李洁,武昌工学院副教授。2016年7月在武汉理工大学获得材料科学与工程专业工学博士学位。以第一作者在国内外学术期刊上发表论文20余篇。研究工作重点发展新型无机非金属材料,开展关于有机无机空心微介孔杂化材料和高性能建筑用相变储能材料的基础理论和应用研究,主持包括湖北省自然科学基金青年项目、武昌工学院博士科研启动基金项目、校企合作项目等。
引用本文:    
李洁, 张佳, 付明琴, 许立强, 胡其志, 李小鹏, 余萃. 介孔SiO2负载有机基二元定型复合相变储能材料的性能研究[J]. 材料导报, 2021, 35(z2): 483-487.
LI Jie, ZHANG Jia, FU Mingqin, XU Liqiang, HU Qizhi, LI Xiaopeng, YU Cui. Study on the Performance of Organic Base Binary Stereotyped Composite Phase Change Material Supported by Mesoporous SiO2. Materials Reports, 2021, 35(z2): 483-487.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/483
1 Koohi-Fayegh S, Rosen M A. Journal of Energy Storage, 2020, 27, 101047.
2 傅一波, 王冬梅, 朱宏. 材料导报, 2016, 30(S2), 222.
3 Ahmet Kürklü. Renewable Energy, 1998, 13(1), 89.
4 Yang J, Tang L S, Bai L, et al. Materials Horizons, 2019, 6(2), 250.
5 Zakir Khan, Zulfiqar Khan, Abdul Ghafoor. Energy Conversion and Management, 2016,115, 132.
6 YuanY, Zhang N, Tao W, et al.Renewable and Sustainable Energy Reviews, 2014, 29, 482.
7 Yan Q Y, Liu C, Zhang J, et al. Journal of Physics: Corrference Series, 2018, 1074(1),012156.
8 He H T, Zhao P, Yue Q Y, et al. Renewable Energy, 2015, 76, 45.
9 Sharma A, Shukla A. Energy and Buildings, 2015, 99, 196.
10 刘臣臻, 饶中浩. 相变储能材料与热性能,中国矿业大学出版社,2019.
11 李亚琼, 梁凯彦, 王静静, 等.工程科学学报, 2020, 42(10), 1229.
12 Allahbakhsh A, Arjmand M. Carbon, 2019, 148, 441.
13 Li M, Wang W, Zhang Z G, et al. Industrial and Engineering Chemistry Research, 2017, 56(12), 3297
14 Mitran R A, Berger D, Munteanu C, et al. Journal of Physical Chemistry C, 2015, 119(27), 15177.
15 Rashidi S, Esfahani J A, Karimi N. Renewable Sustainable Energy Reviews, 2018, 91, 229.
16 Sar¹ A, Bicer A, Al-Ahmed A, et al.Solar Energy Materials and Solar Cells, 2018, 179, 353.
17 张东, 吴科如.同济大学学报:自然科学版, 2004, 32(9), 1163.
18 Chen Y, Zhang X J, Wang B F, et al. RSC Advances, 2017, 7(26), 15625.
[1] 李伟培, 何世杰, 邱志明, 吴松平, 严玉蓉. 载体孔属性对多孔复合PCMs热性能的影响:综述[J]. 材料导报, 2021, 35(Z1): 495-500.
[2] 张䶮, 朱永乐, 黄丽娟, 王永安, 赵瑾, 聂志勇. 介孔二氧化硅门控开关在分析检测中的研究进展[J]. 材料导报, 2021, 35(15): 15081-15087.
[3] 刘振英, 朱金波, 刘银, 薛长国, 姜悦纳. 氧化钴掺杂对溶胶凝胶法合成莫来石微观结构和烧结性能的影响[J]. 材料导报, 2020, 34(24): 24005-24009.
[4] 陈有为, 王夏天, 李琦, 张威波, 史丹, 黄姣, 陈丹超, 周生虎. “核-壳-冠”聚合物胶束模板合成无机中空纳米材料的研究进展[J]. 材料导报, 2020, 34(11): 11090-11098.
[5] 赖榕永, 王温馨, 谢雯倩, 丁益民. MA-PA-SA/改性粉煤灰复合相变储能材料的制备与性能[J]. 材料导报, 2019, 33(z1): 219-222.
[6] 张潇华, 于思荣, 郭丽娟, 周扬理. 硅含量对Al-Si-Cu相变储能材料腐蚀性的影响[J]. 材料导报, 2019, 33(4): 582-585.
[7] 李秀丽, 铁生年. 速溶高粘羧甲基纤维素钠对不同相变温度梯度芒硝基相变储能材料性能的影响[J]. 材料导报, 2018, 32(22): 3848-3852.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed