Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 33-37    
  无机非金属及其复合材料 |
二维材料在摩擦机理和润滑应用方面的研究进展
刘晓刚1,2, 孙红1, 刘林聪1
1 广西科技大学机械与交通工程学院,柳州 545006
2 桂林航天工业学院汽车与交通工程学院,桂林 541004
Research Progress of 2D Materials in Friction Mechanism and Lubrication Application
LIU Xiaogang1,2,SUN Hong1, LIU Lincong1
1 School of Mechanical Transportation Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
2 School of Automotive and Traffic Engineering, Guilin University of Aerospace Technology, Guilin 541004, China
下载:  全 文 ( PDF ) ( 6002KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 层状结构的二维材料具有原子级的厚度、层间超低的剪切强度、高比表面积以及表面化学稳定性。其由于独特的性能,引起了润滑领域研究人员的极大兴趣。当二维材料应用于润滑领域时,不仅能够大幅度提高润滑介质的减摩性能,还可以解决传统添加剂的局限性,如分散性差、恶劣环境下失效。本文从二维材料的纳米摩擦机理出发,详细介绍了二维材料的层间摩擦机理和表面摩擦机理;另外,从实验内容、润滑性能及润滑机制等方面也详细介绍了近年来二维材料用作添加剂在油润滑和水润滑等领域的研究进展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘晓刚
孙红
刘林聪
关键词:  二维材料  层间摩擦机理  表面摩擦机理  油润滑  水润滑    
Abstract: 2D materials having a layered structure comprise atomic thickness, ultra-low shear strength, the high specific surface area and surface chemical stability. Due to their excellent performances, 2D materials have attracted considerable attention in the field of lubrication. When 2D materials were used in the field of lubrication, they can not only greatly improve the anti-friction performance of lubricating medium, but also solve the limitations of traditional additives, such as poor dispersion and failure in harsh environments. In this article, the nanoscale friction mechanisms of 2D materials including friction mechanism of interlayer and surface are summarized. In addition, the application of 2D materials as additives in the field of oil lubrication and water lubrication in terms of experimental content, lubrication performance and lubrication mechanism is elaborated.
Key words:  2D materials    friction mechanism of interlayer    friction mechanism of surface    oil lubrication    water lubrication
                    发布日期:  2021-12-09
ZTFLH:  TB34  
基金资助: 广西创新驱动发展重大专项基金项目(AA18242049);广西区机器人工程应用重点实验室基金(20190206-2)
通讯作者:  15177728580@163.com   
作者简介:  刘晓刚,1987年于大连理工大学获得学士学位,1995年于北京科技大学获得硕士学位,2009年于华南理工大学获得博士学位。现为桂林航天工业学院教授,硕士研究生导师,主要研究方向为智能焊接机器人、机械装置的研发与材料制备。以第一或通讯作者身份公开发表学术期刊研究论文10余篇。曾获桂林市科学技术进步奖二等奖。
孙红,2018年毕业于安徽科技学院,获得工学学士学位。现为广西科技大学机械与交通工程学院硕士研究生,在刘晓刚教授的指导下进行研究。目前主要研究领域为机械装置的研发与材料制备。
引用本文:    
刘晓刚, 孙红, 刘林聪. 二维材料在摩擦机理和润滑应用方面的研究进展[J]. 材料导报, 2021, 35(z2): 33-37.
LIU Xiaogang,SUN Hong, LIU Lincong. Research Progress of 2D Materials in Friction Mechanism and Lubrication Application. Materials Reports, 2021, 35(z2): 33-37.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/33
1 温诗铸. 机械工程学报, 2007, 43(10), 1.
2 Nosonovsky M. Tribological Online, 2007, 2(2), 44.
3 Berman D, Erdemir A, Sumant A V. Materials Today, 2014, 17(1), 31.
4 王万平,屈文山,赵建国. 炭素技术, 2015, 34(6), 17.
5 Lee C, Li Q, Kalb W, et al. Science, 2010, 328(5974), 76.
6 Song H, Li N. Applied Physics A, 2011, 105(4), 827.
7 Chen Z, Liu Y, Gunsel S, et al. Langmuir, 2018, 34(4), 1635.
8 Hirano M. Friction, 2014, 2(2), 95.
9 Hirano M, Shinjo K. Physical Review B, 1990, 41(17), 11837.
10 Hirano M, Shinjo K, Kaneko R, et al. Physical Review Letters, 1997, 78(8), 1448.
11 Dienwiebel M, Pradeep N, Verhoeven G S, et al. Surface Science, 2005, 576(1-3), 197.
12 Feng X, Kwon S, Park J Y, et al. ACS Nano, 2013, 7(2), 1718.
13 Wijn A S D, Fusco C, Fasolino A. Physical Review E, 2010, 81, 46105.
14 Berman D, Deshmukh S A, Sankaranarayanan S K R S, et al. Science, 2015, 348(6239), 1118.
15 Leven I, Krepel D, Shemesh O, et al. Journal of Physical Chemical Letters, 2013, 4(1), 115.
16 Guo Y, Guo W, Chen C. Physical Review B, 2007, 76(15),155429.
17 Filleter T, McChesney J L, Bostwick A, et al. Physical Review Letters, 2009, 102(8), 86102.
18 Dong Y. Journal of Physics D Applied Physics, 2014, 47(5), 55305.
19 Li Q, Lee C, Carpick R W, et al. Physia Status Solidi B, 2010, 247(11-12), 2909.
20 Deng Z, Klimov N N, Solares S D, et al. Langmuir, 2012, 29(1), 235.
21 Smolyanitsky A, Killgore J P, Tewary V K. Physical Review B, 2012, 85(3), 35412.
22 Deng Z, Smolyanitsky A, Li Q, et al. Nature Materials, 2012, 11(12), 1032.
23 Chen Z, Liu Y, Luo J. Chinese Journal of Mechanical Engineering, 2016, 29(2), 439.
24 Zhao J, Li Y, Wang Y, et al. RSC Advances, 2017, 7(3), 1766.
25 Zhang X, Xu H, Wang J, et al. Nanoscale Research Letters, 2016, 11(1), 442.
26 Chen Z, Li X, Wang J, et al. ACS Nano, 2017, 11(1), 430.
27 白鸽玲,吴壮志. 润滑与密封, 2013, 38(4), 93.
28 Zhou Q, Huang J, Wang J, et al. RSC Advance, 2015, 5, 91802.
29 Lin J, Wang L, Chen G. Tribological Letters, 2011, 41(1), 209.
30 张伟,朱宏伟. 自然杂志, 2016, 38(2), 94.
31 Kumari S, Sharma O P, Gusain R, et al. ACS Applied Materials and Interfaces, 2015, 7(6), 3708.
32 Kumari S, Mungse H P, Gusain R, et al. Chemistry of Flat Materials, 2017, 3, 16.
33 Fan X, Wang L. Journal of Colloid Interface Science, 2015, 452, 98.
34 Sanes J, Avilés M, Saurín N, et al. Tribological International, 2017, 116, 371.
35 Xu Y, Peng Y, Dearn K D, et al. Wear, 2015, 342-343, 297.
36 Gusain R, Mungse H P, Kumar N, et al. Journal of Materials Chemistry A, 2016, 4(3), 926.
37 张丽丽,蒲吉斌,张广安,等. 摩擦学学报, 2015, 35(6), 746.
38 Zhang Y, Tang H, Ji X, et al. RSC Advances, 2013, 3(48), 26086.
39 Xie H, Jiang B, Dai J, et al. Materials, 2018, 11(2062),206.
40 Liu Y, Wang X, Pan G, et al. Science China Technological Sciences, 2013, 56(1), 152.
41 Cho D, Kim J, Kwon S, et al. Wear, 2013, 302, 981.
42 Hou X, Yang C, He J, et al. Industry Engineering Chemistry Research, 2015, 54(17), 4773.
43 乔玉林,赵海朝,臧艳,等. 无机材料学报, 2015, 30(1), 41.
[1] 李彬, 李娜, 黄一凡, 王强, 张晓东. 单粒子效应的激光模拟方法研究进展[J]. 材料导报, 2021, 35(21): 21195-21201.
[2] 刘后宝, 傅仁利, 苏新清, 陈旭东, 吴彬勇. MXene材料的结构、性能及在电磁屏蔽领域的应用[J]. 材料导报, 2021, 35(13): 13067-13074.
[3] 杨晨, 高凤雨, 唐晓龙, 易红宏, 苗磊磊, 于庆君, 赵顺征. 二维材料的合成方法及在催化领域应用的研究进展[J]. 材料导报, 2020, 34(13): 13005-13016.
[4] 曹明星, 马立文, 王志宏. 碲属线性巨磁阻材料研究进展[J]. 材料导报, 2020, 34(13): 13131-13138.
[5] 郑伟, 杨莉, 张培根, 陈坚, 田无边, 张亚梅, 孙正明. 二维材料MXene的储能性能与应用[J]. 材料导报, 2018, 32(15): 2513-2537.
[6] 郑伟, 孙正明, 张培根, 田无边, 王英, 张亚梅. 二维纳米材料MXene的研究进展*[J]. CLDB, 2017, 31(9): 1-14.
[7] 唐捷, 华青松, 元金石, 张健敏, 赵玉玲. 超级电容器中的二维材料[J]. CLDB, 2017, 31(9): 26-35.
[8] 王慧德, 范涛健, 谢中建, 张晗. 二维黑磷的制备及光电器件研究进展*[J]. CLDB, 2017, 31(9): 45-49.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed