Please wait a minute...
材料导报  2021, Vol. 35 Issue (Z1): 247-250    
  无机非金属及其复合材料 |
渗透结晶型表面防护剂对混凝土耐久性的影响
李崇智, 王梦宇, 牛振山
北京建筑大学土木与交通工程学院,北京 100044
Influence of Permeable Crystalline Surface Protective Agent on Durability of Concrete
LI Chongzhi, WANG Mengyu, NIU Zhenshan
School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
下载:  全 文 ( PDF ) ( 4437KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本研究采用苯丙乳液、甲基硅酸钠、水玻璃、三异丙醇胺TPA和氟硅酸镁配制了渗透结晶型表面防护剂,该防护剂对硬化混凝土长期耐久性的提高有明显效果。当自制的渗透结晶型表面防护剂稀释配制成质量分数为0.5~0.75时,可最大限度提高混凝土的抗碳化能力,降低试块在干湿循环下的质量损失和强度损失。该浓度下混凝土的碳化深度可比空白组降低20%,裂缝面积比空白组降低约46.7%。通过XRD和SEM实验,对其机理进行分析,复合型防护剂的活性物质可以渗透进混凝土内部发生反应,与混凝土中硅酸盐水化物、氢氧化钙等进行络合反应,并在孔隙裂缝的表面生成疏水性络合物,具有密实填充作用和拒水渗透功能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李崇智
王梦宇
牛振山
关键词:  渗透结晶型表面防护剂  装配式混凝土构件养护  耐久性能    
Abstract: Adopting styrene-acrylic emulsion, sodium methyl silicate, water glass, triisopropanolamine TPA and magnesium fluorosilicate to configure the permeable crystalline surface protective agent, which has a significant effect on the long-term durability of hardened concrete. When the self-made permeable crystalline surface protective agent is diluted and configured into a solution with a mass fraction of 0.5 to 0.75, it can maximize the ability of concrete to resist carbonization and reduce the mass loss and strength loss of the test block under dry and wet cycles.At this concentration, the carbonization depth can be reduced by 20% compared with the blank group, and the crack area is reduced by about 46.7%. Through XRD and SEM experiments to analyze its mechanism, the active substance of the composite protective agent can penetrate into the concrete to react, and complex reaction with silicate hydrate and calcium hydroxide in the concrete, and in the pore cracks hydrophobic complexes are formed on the surface, which has the function of compact filling and water repellent penetration.
Key words:  permeable crystalline surface protective agent    assembled concrete components    durability
                    发布日期:  2021-07-16
ZTFLH:  TU528  
通讯作者:  lichongzhi@bucea.edu.cn   
作者简介:  李崇智,北京建筑大学教授,2004 年清华大学土木工程专业博士毕业,主要从事混凝土外加剂研制与应用研究,在研混凝土混凝土抗裂防腐蚀外加剂。
引用本文:    
李崇智, 王梦宇, 牛振山. 渗透结晶型表面防护剂对混凝土耐久性的影响[J]. 材料导报, 2021, 35(Z1): 247-250.
LI Chongzhi, WANG Mengyu, NIU Zhenshan. Influence of Permeable Crystalline Surface Protective Agent on Durability of Concrete. Materials Reports, 2021, 35(Z1): 247-250.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/IZ1/247
1 于慧生.无机盐工业,1983(2),18.
2 蔡老虎,张立国. 建材世界,2019,40(1).
3 Nasiru Z M, Ail K, Muhd Z A, et al. Construction and Building Mate-rials, 2015,101,80.
4 赵珏, 王子明. 混凝土与水泥制品,2015(6),6.
5 张磊,高瑞晓,荣辉,等.建筑材料学报,2019, 22(4), 523.
6 陈嘉林,刘义兴.中国建筑防水,2009(2),12.
7 李静. 受冻条件及引气剂对混凝土抗冻性影响的研究. 硕士学位论文,沈阳建筑大学,2015.
8 崔应乐.居业,2017(5),81.
9 伯文.精细化工原料及中间体,2007(11),11.
10 张馨元,李绍纯,等.混凝土,2013(11),72.
[1] 常洪雷, 陈繁育, 金祖权, 王广月, 刘健. 再生骨料混凝土在护岸工程应用的可行性[J]. 材料导报, 2020, 34(Z2): 206-211.
[2] 力乙鹏, 李婷. 土壤固化剂的固化机理与研究进展[J]. 材料导报, 2020, 34(Z2): 273-277.
[3] 王梦宇, 李崇智, 牛振山. 渗透结晶型防护剂对混凝土防水抗蚀性能的影响[J]. 材料导报, 2020, 34(Z1): 185-188.
[4] 吴昊宇, 吴培红, 卞立波, 陶志. 纤维珠链在混凝土抗裂性能设计中的应用研究[J]. 材料导报, 2020, 34(Z1): 193-198.
[5] 汪知文, 李碧雄. 稻壳灰应用于水泥混凝土的研究进展[J]. 材料导报, 2020, 34(9): 9003-9011.
[6] 王家滨, 牛荻涛. 硝酸侵蚀/冻融循环共同作用喷射混凝土耐久性能(I):物理力学性能及孔结构变化[J]. 材料导报, 2019, 33(8): 1340-1347.
[7] 张则瑞, 吴建东, 杨敬斌, 周建和, 李东旭. 氧化石墨烯对水泥基自流平砂浆性能的影响[J]. 材料导报, 2019, 33(2): 240-245.
[8] 苏丽, 牛荻涛, 罗大明. 珊瑚骨料混凝土力学性能及耐久性能研究[J]. 材料导报, 2018, 32(19): 3387-3393.
[9] 张云升, 张文华, 陈振宇. 综论超高性能混凝土:设计制备·微观结构·力学与耐久性·工程应用*[J]. CLDB, 2017, 31(23): 1-16.
[10] 张虎. 自密实钢纤维轻骨料混凝土的早期性能与损伤分析*[J]. 《材料导报》期刊社, 2017, 31(20): 124-128.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed