Please wait a minute...
材料导报  2021, Vol. 35 Issue (10): 10048-10054    https://doi.org/10.11896/cldb.20010045
  无机非金属及其复合材料 |
磷酸二氢钠与硬脂酸钠复合改性发泡硫氧镁水泥
樊梦琪1, 王昊2, 侯宇轩2, 王惠维2, 杨红健1, 程庆彦1, 罗学如1
1 河北工业大学化工学院,天津 300130
2 天津市热力有限公司,天津 300070
Sodium Dihydrogen Phosphate and Sodium Stearate Compound Modified Foamed Magnesium Oxysulfate Cement
FAN Mengqi1, WANG Hao2, HOU Yuxuan2, WANG Huiwei2, YANG Hongjian1, CHENG Qingyan1, LUO Xueru1
1 School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, China
2 Tianjin Thermal Heating Co., Ltd., Tianjin 300070, China
下载:  全 文 ( PDF ) ( 6609KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用磷酸二氢钠与硬脂酸钠复合改性的方式制备发泡硫氧镁水泥(FMOSC),并与单掺改性所制备的试样进行比较,研究复合改性对FMOSC干密度、孔隙率、孔结构、孔径分布、抗压强度和软化系数的影响,通过X射线衍射仪、红外光谱仪、扫描电子显微镜分析复合改性对FMOSC水化产物的物相组成和微观形貌的影响及改性机理。结果表明:磷酸二氢钠和硬脂酸钠对FMOSC干密度和孔隙率基本无影响,采用复合改性使试样孔结构和孔径分布得到优化,抗压强度和软化系数均为改性前试样的2倍以上,改性效果优于单掺改性;硬脂酸钠单独掺入后FMOSC水化产物仍以Mg(OH)2为主,引入磷酸二氢钠后水化产物以517相为主;H2PO4-吸附在氧化镁水化层表面抑制Mg(OH)2生成,促进517晶核形成,在晶核自组装过程中,C17H35COO-在晶核表面发生化学吸附,影响517相形貌。在两种改性剂的双重作用下,本工作制备出轻质、高强、耐水的FMOSC。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
樊梦琪
王昊
侯宇轩
王惠维
杨红健
程庆彦
罗学如
关键词:  发泡硫氧镁水泥(FMOSC)  抗压强度  软化系数  复合改性剂  517晶相    
Abstract: The foamed magnesium oxysulfate cement (FMOSC) samples prepared by the composite modification and single-admixture modification of sodium dihydrogen phosphate (SDP) and sodium stearate (SS) were compared. The effect of compound modifier on dry density, porosity, pore structure, pore size distribution, compressive strength and softening coefficient of FMOSC were studied. The phase composition and microscopic morphology of hydration product were studied by X-ray diffraction, infrared spectra and scanning electron microscopy. The results show that SDP and SS have a slight influence on the dry density and porosity of the sample, the pore structure and pore size distribution are optimized, and the compressive strength and softening coefficient are more than two times higher than before modification by composite modification. In the meantime, the effect of the composite modification is better than that of single modification. The main hydrate product of FMOSC is Mg(OH)2 after the addition of SS and 517 phase when the SDP have been introduced. It is indicated that the H2PO4- can adsorb on the surface of hydrated magnesium oxide, inhibiting the formation of Mg(OH)2 and promoting the formation of 517 crystal nucleus. During the self-assembly process of crystal nucleus to form 517 crystal phase, the C17H35COO- adsorbed on the surface of crystal nucleus and affected the morphology of 517 crystal. Under the double action of SDP and SS, the FMOSC with advantages of lightweight, high strength and excellent water resistance have been prepared.
Key words:  foamed magnesium oxysulfate cement (FMOSC)    compressive strength    softening coefficient    compound modifier    517 crystal phase
               出版日期:  2021-05-25      发布日期:  2021-06-04
ZTFLH:  TQ177.5  
基金资助: 天津市科技计划项目(18YFCZZC00200)
通讯作者:  1991033@hebut.edu.cn   
作者简介:  樊梦琪,河北工业大学化工学院硕士研究生,本科毕业于河北大学。主要从事新型菱镁胶凝材料的制备及改性研究。
杨红健,河北工业大学化工学院副教授,博士。主要研究方向为工业水处理、菱镁胶凝复合材料等,与多家企业合作,主持多项横向及纵向研究课题。
引用本文:    
樊梦琪, 王昊, 侯宇轩, 王惠维, 杨红健, 程庆彦, 罗学如. 磷酸二氢钠与硬脂酸钠复合改性发泡硫氧镁水泥[J]. 材料导报, 2021, 35(10): 10048-10054.
FAN Mengqi, WANG Hao, HOU Yuxuan, WANG Huiwei, YANG Hongjian, CHENG Qingyan, LUO Xueru. Sodium Dihydrogen Phosphate and Sodium Stearate Compound Modified Foamed Magnesium Oxysulfate Cement. Materials Reports, 2021, 35(10): 10048-10054.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20010045  或          http://www.mater-rep.com/CN/Y2021/V35/I10/10048
1 Shi J Y, Liu Y C, Liu B J, et al.Advances in Materials Science and Engineering, 2019, 2019(4).
2 Tan X J, Chen W Z, Hao Y G, et al. Advances in Materials Science and Engineering, 2014, 2014(8), 1.
3 Amran Y H M, Farzadnia N, Abang Ali A A. Construction and Building Materials, 2015, 101, 990.
4 Liu Z W, Zhao K, Hu C, et al. Advances in Materials Science and Engineering, 2016, 2016(11), 1.
5 Zhou X X, Yang Z Z, Xu Y J, et al. Materials Reports A: Review Papers, 2019, 33(8), 2546(in Chinese).
周薛霞, 杨赞中, 徐艳娇,等. 材料导报:综述篇, 2019, 33(8), 2546.
6 Luo X R, Fan W Q, Li C Q, et al. Journal of the Chinese Ceramic Society, 2020, 48(2), 222 (in Chinese).
罗学如, 范文强, 李春庆,等. 硅酸盐学报, 2020, 48(2), 222.
7 Ye Q Q, Han Y F, Zhang S F, et al.Journal of Hazardous Materials, 2020, 383, 121099.
8 Li Q Y, Zhang L C, Gao X J, et al.Construction and Building Materials, 2020, 230, 116990.
9 Wu C Y, Yu H F, Zhang H F, et al. Materials and Structures, 2015, 48(4), 907.
10 Wang N, Yu H F, Bi W L, et al.Construction and Building Materials, 2018, 169, 697.
11 Wu C Y. Fundamental theory and civil engineering application of basic magnesium sulfate cement. Ph.D. Thesis, Qinghai Institute of Salt Lakes, Chinese Academy of Science, China, 2014 (in Chinese).
吴成友. 碱式硫酸镁水泥的基本理论及其在土木工程中的应用技术研究.博士学位论文,中国科学院研究生院(青海盐湖研究所), 2014.
12 Liu C, Luo J L, Li Y Q, et al.Construction and Building Materials, 2019, 228, 116798.
13 Wang L M, Feng K B, Chen X F. Journal of Functional Materials, 2015, 46(12), 12009 (in Chinese).
王路明, 冯扣宝, 陈雪霏. 功能材料, 2015, 46(12), 12009.
14 WB/T 1019-2002. Caustic burned magnesia for magnesium oxychloride cement products. Standards Press of China, China, 2002(in Chinese).
WB/T 1019-2002.菱镁制品用轻烧氧化镁, 中国标准出版社, 2002.
15 Zhang C M, Deng D H. New Building Materials, 1995(2), 11 (in Chinese).
张传镁, 邓德华 .新型建筑材料, 1995(2), 11.
16 Xie Y, Li J, Lu Z Y, et al.Construction and Building Materials, 2018, 179, 207.
17 Zhang X, Huang T H, Zhang Y J, et al. Journal of Building Materials, 2015, 18(1), 177 (in Chinese).
张雄, 黄廷皓, 张永娟, 等. 建筑材料学报, 2015, 18(1), 177.
18 Wang F Z, Yang L, Guan L Y, et al. Journal of Wuhan University of Technology-Mater. Sci. Ed, 2015, 30(2), 331.
19 Hilal A A, Thom N H, Dawson A R.Construction and Building Materials, 2015, 85, 157.
20 Wen J, Yu H F, Li Y, et al. Journal of Wuhan University of Technology-Mater. Sci. Ed, 2014, 29(1), 114.
21 Runćevski T, Wu C Y, Yu H F, et al.Journal of the American Ceramic Society, 2013, 96(11), 3609.
22 Yang Y F, Wu X F, Hu G S, et al.Journal of Crystal Growth, 2008, 310(15), 3557.
23 Dang L, Nai X Y, Zhu D H, et al.Applied Surface Science, 2014, 317, 325.
24 Guo T, Wang H F, Yang H J, et al.Construction and Building Materials, 2017, 150, 844.
25 Fan H, Song X F, Xu Y X, et al.Applied Surface Science, 2019, 478, 594.
26 Liu C J, Zhao Q, Wang Y G, et al.Applied Surface Science, 2016, 360, 263.
27 Yuan Z T, Wang Y B, Han Y X, et al. Chinese Journal of Inorganic Chemistry, 2008, 2008(7), 1062(in Chinese).
袁致涛, 王宇斌, 韩跃新, 等. 无机化学学报, 2008, 2008(7), 1062.
28 Izaguirre A, Lanas J, Lvarez J I. Cement and Concrete Research, 2009, 39(11), 1095.
29 Atahan H, Jr C, Chae S, et al.Cement and Concrete Composites, 2008, 30(7), 566.
30 Ramachandran V S, Lowery M S, Wise T, et al.Materials and Structures, 1993, 26(7), 425.
31 Wu X X, Qi S S, Chang T T, et al. Bulletin of the Chinese Ceramic So-ciety, 2019,38(9), 2731(in Chinese).
吴潇潇, 岂珊珊, 常婷婷, 等. 硅酸盐通报, 2019, 38(9), 2731.
32 Xiao J F, Nai X Y, Gou S L, et al. Journal of Inorganic Materials, 2019, 34(11), 1181(in Chinese).
肖剑飞,乃学瑛,苟生莲,等. 无机材料学报, 2019, 34(11), 1181.
[1] 代金芯, 石宵爽, 王清远, 张红恩, 栾晨晨, 张宽裕, 杨富花. 多因素对再生复合掺料基地聚物混凝土抗压强度的影响[J]. 材料导报, 2021, 35(9): 9077-9082.
[2] 龚建清, 罗鸿魁, 张阳, 龚啸, 谢泽酃, 吴五星, 戴远帆. 减缩剂和HCSA膨胀剂对UHPC力学性能和收缩性能的影响[J]. 材料导报, 2021, 35(8): 8042-8048.
[3] 史金华, 史才军, 欧阳雪, 刘剑辉, 黄勇, 吴泽媚. 超高性能混凝土受压弹性模量研究进展[J]. 材料导报, 2021, 35(3): 3067-3075.
[4] 卞立波, 董申, 陶志. 碱激发矿渣/粉煤灰多孔混凝土基本性能试验研究[J]. 材料导报, 2020, 34(Z2): 299-303.
[5] 刘盼, 肖学英, 常成功, 阿旦春, 李颖, 董金美, 郑卫新, 黄青, 董飞, 刘秀泉, 文静. 基于正交试验和响应面法优化煅烧法提锂副产物制备氯氧镁水泥材料的工艺研究[J]. 材料导报, 2020, 34(Z2): 308-314.
[6] 陈镇杉, 吴玉生, 彭鹏飞, 黄舟, 陈梅红, 蔡博群. 氟铝络合物对硫酸铝型速凝剂性能的影响[J]. 材料导报, 2020, 34(Z1): 178-180.
[7] 姜宽, 戚承志, 崔英洁, 李太行, 卢真辉. 纤维素等若干因素对仿钢纤维增强透水混凝土性能的影响[J]. 材料导报, 2020, 34(Z1): 189-192.
[8] 卢喆, 冯振刚, 姚冬冬, 纪鸿儒, 秦卫军, 于丽梅. 超高性能混凝土工作性与强度影响因素分析[J]. 材料导报, 2020, 34(Z1): 203-208.
[9] 欧孝夺, 彭远胜, 莫鹏, 江杰. 掺铝土尾矿泡沫轻质土的物理力学及水力特性研究[J]. 材料导报, 2020, 34(Z1): 241-245.
[10] 宋维龙, 朱志铎, 浦少云, 宋世攻, 彭宇一, 顾晓彬, 魏永强. 碱激发二元/三元复合工业废渣胶凝材料的力学性能与微观机制[J]. 材料导报, 2020, 34(22): 22070-22077.
[11] 刘鑫, 彭泽川, 潘晨豪, 胡鑫, 万朝均, 杨宏宇. 纳米二氧化硅改性粉煤灰地聚合物力学性能及微观分析[J]. 材料导报, 2020, 34(22): 22078-22082.
[12] 申嘉荣, 徐千军. 高温对混凝土孔隙结构改变和抗压强度降低作用的规律研究[J]. 材料导报, 2020, 34(2): 2046-2051.
[13] 赵燕茹, 刘芳芳, 王磊, 郭子麟. 单面盐冻条件下基于孔结构的玄武岩纤维混凝土抗压强度模型[J]. 材料导报, 2020, 34(12): 12064-12069.
[14] 董金美, 肖学英, 李颖, 文静, 郑卫新, 常成功, 余红发. 原料质量配比对盐湖磷酸钾镁水泥性能和微观结构的影响[J]. 材料导报, 2020, 34(10): 10041-10045.
[15] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed