Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z1): 516-522    
  高分子与聚合物基复合材料 |
抗癌纳米药物共递送系统的应用研究
吴天怡, 龚妍春, 李资玲, 李玉萍, 熊向源
江西科技师范大学生命科学学院,南昌 330000
Application of Nanoparticle-based Co-delivery Strategies for Cancer Therapy
WU Tianyi, GONG Yanchun, LI Ziling, LI Yuping, XIONG Xiangyuan
School of Life Science,Jiangxi Science & Technology Normal University, Nanchang 330000, China
下载:  全 文 ( PDF ) ( 3667KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,运用纳米制剂靶向技术治疗癌症取得了很好的疗效,尤其是共递送多种抗癌药物。相比单一药物,联合应用不同药物分子靶向治疗范围更广,能有效地降低药物的毒副作用,或是相同细胞通路的抗癌药物组合疗法,减少每种药物剂量并增强疗效,均可能在一定程度上逆转多药耐药性。但是,组合给药因不同药物的药代动力学差异导致药物摄取不一致而受到限制,而且疗效与组合药物的相对浓度关系密切,一定比例的药物组合产生协同作用,而其他比例则可能是加和作用或拮抗作用。目前,脂质体、聚合物胶束、高分子囊泡、树枝状大分子、水凝胶和无机纳米粒子在内的纳米载体已被证明能成功地在各种肿瘤模型中共递送抗癌药物。这些纳米载体可改善药物的血清稳定性,提高生物相容性,延长在体内的循环时间。本文主要论述抗癌药物共递送原理、常见共递送载体类型以及CombiPlex®平台完成临床试验的两种脂质体制剂和三类仍处于临床前研究的经典共递送系统,包括阿霉素和紫杉醇共递送系统、紫杉醇和顺铂共递送系统、阿霉素和姜黄素共递送系统,旨在为更多联合给药方案提供参考和新思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴天怡
龚妍春
李资玲
李玉萍
熊向源
关键词:  纳米药物  共递送  抗癌药物  多药耐药性    
Abstract: In recent years,the application of targeted nanotechnology has achieved good therapeutic effects in cancer treatment, especially the co-delivery of various anti-cancer drugs. Compared with single drug treatment, the combined application of different molecular targeted drugs has a wider treatment domain and effectively reduce adverse effects of drugs. In addition, the combination therapy of anti-cancer agents dependent on the same cell pathway decrease the dosage of each drug and enhance therapeutic effects. The aforementioned methods could reverse multi-drug resistance to a certain extent. However, combined administration is limited due to inconsistent cellular uptake caused by pharmacokinetic differences of different drugs. The therapeutic effects are closely related to the relative concentration of the combined drugs. A certain proportion of drug combinations could produce synergistic effect, while other proportions may be additive effect or antagonistic effect. At present, the nanocarriers, including liposomes, polymer micelles, polymer vesicles, dendrimers, hydrogels and inorganic nanoparticles have been demonstrated to deliver anti-cancer agents in various tumor models. These nanocarriers could improve serum stability, enhance biocompatibility and prolong in vivo circulation time. In the present review, we will highlight the co-delivery principle of anti-cancer drugs, the types of co-delivery carriers, two kinds of liposomes on the CombiPlex platform whose clinical trials have been completed, and three kinds of classical co-delivery drug systems that are still in preclinical research, including doxorubicin and paclitaxel co-delivery systems, paclitaxel and cisplatin co-delivery systems, doxorubicin and curcumin co-delivery systems. These emerging strategies promise reference and novel ideas for more combinatorial regimens.
Key words:  nanomedicine    co-delivery    anti-cancer agents    multi-drug resistance
                    发布日期:  2020-07-01
ZTFLH:  TB324  
  R73  
基金资助: 国家自然科学基金(21664007);江西省主要学科学术和技术带头人培养计划(20153BCB22009);省级研究生创新专项资金(YC2019-S407)
作者简介:  吴天怡,2017年毕业于河北医科大学药物分析专业,毕业后于河北圣雪大成唐山制药有限责任公司工作一年,担任实验技术员。现为江西科技师范大学生命科学学院硕士研究生,在熊向源教授的指导下进行研究。目前主要研究方向为高分子生物医药材料,叶酸靶向纳米药物的合成及表征,共递送两种不同性质抗癌药物释放体系,以及相关细胞毒性和药物摄取等;熊向源,江西科技师范大学教授,江西省主要学科学术和技术带头人, 被评为2009年江西省百千万人才工程人选,2010年度南昌市劳动模范(先进工作者)。2001年于北京大学获高分子化学与物理硕士学位,同年8月前往新加坡南洋理工大学攻读博士学位,于2005年5月获博士学位,其中2004年8月至2005年3月任新加坡-美国麻省理工联盟研究助理。2005年加入江西科技师范学院生命科学学院工作,同年12月被评为教授。主要从事纳米级高分子药物载体的研究,包括生物相容性和生物可降解性嵌段共聚物的可控合成及表征,高分子纳米粒子在水中的聚集形态和大小,纳米粒子在生物医药领域的应用研究,尤其是可控释放体系、靶向释放体系等。在Journal of Controlled Release、Nanome-dicine等期刊上发表了20余篇SCI论文。获得2007—2008年度江西省高等学校科技成果奖二等奖,2009年度江西省自然科学奖三等奖。
引用本文:    
吴天怡, 龚妍春, 李资玲, 李玉萍, 熊向源. 抗癌纳米药物共递送系统的应用研究[J]. 材料导报, 2020, 34(Z1): 516-522.
WU Tianyi, GONG Yanchun, LI Ziling, LI Yuping, XIONG Xiangyuan. Application of Nanoparticle-based Co-delivery Strategies for Cancer Therapy. Materials Reports, 2020, 34(Z1): 516-522.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ1/516
1 Bray F, Ferlay J, Soerjomataram I, et al. CA: A Cancer Journal for Clinicians,2018,68(6),394.
2 El-Zahaby S A, Elnaggar Y S R, Abdallah O Y. Journal of Controlled Release,2019,293,21.
3 Barenholz Y C. Journal of Controlled Release,2012,160(2),117.
4 Keam B, Lee K W, Lee S H, et al. The Oncologist,2019,24,751.
5 Silverman J A, Deitcher S R. Cancer Chemotherapy and Pharmacology,2013,71(3),555.
6 Marusyk A, Almendro V, Polyak K. Nature Reviews Cancer,2012,12(5),323.
7 Greco F, Vicent M J. Advanced Drug Delivery Reviews,2009,61(13),1203.
8 Hartwell L H, Kastan M B. Science,1994,266(5192),1821.
9 Evan G I, Vousden K H. Nature,2001,411(6835),342.
10 Chen Y, Cheng Y, Zhao P, et al. International Journal of Pharmaceutics,2018,542(1-2),266.
11 Ruttala H B, Ramasamy T, Gupta B, et al. Carbohydrate Polymers,2017,173,57.
12 Chou T C. Cancer Research,2010,70(2),440.
13 Dicko A, Mayer L D, Tardi P G. Expert Opinion on Drug Delivery,2010,7(12),1329.
14 Mayer L D, Harasym T O, Tardi P G, et al. Molecular Cancer Therapeutics,2006,5(7),1854.
15 Abraham S A, Mckenzie C, Masin D, et al. Clinical Cancer Research,2004,10(2),728.
16 Shen Z, Ye H, Kroger M, et al. Nanoscale,2018,10(9),4545.
17 Katragadda U, Teng Q, Rayaprolu B M, et al. International Journal of Pharmaceutics,2011,419(1-2),281.
18 Palivan C G, Goers R, Najer A, et al. Chemical Society Reviews,2016,45(2),377.
19 Lin J, Cai Q, Tang Y, et al. International Journal of Pharmaceutics,2018,536(1),272.
20 Chen Y, Zhang W, Huang Y, et al. International Journal of Pharmaceutics,2015,488(1-2),44.
21 Jabr-Milane L S, Van Vlerken L E, Yadav S, et al. Cancer Treatment Reviews,2008,34(7),592.
22 Pan J Y, Rostamizadeh K, Filipczak N, et al. Molecules,2019,24(6),32.
23 Guo Q, Li X, Yang Y, et al. Journal of Biomedical Nanotechnology,2014,10(2),227.
24 Torchilin V. Advanced Drug Delivery Reviews,2011,63(3),131.
25 Danhier F, Feron O, Preat V. Journal of Controlled Release,2010,148(2),135.
26 Zhong Y, Meng F, Deng C, et al. Biomacromolecules,2014,15(6),1955.
27 Du J, Mao C, Yuan Y, et al. Biotechnology Advances,2014,32(4),789.
28 Abouelmagd S A, Hyun H, Yeo Y. Expert Opinion on Drug Delivery,2014,11(10),1601.
29 Hu C M J, Zhang L F. Biochemical Pharmacology,2012,83(8),1104.
30 Brandl M. Biotechnology Annual Review,2001,7,59.
31 Cheng Y, Zhao P, Wu S, et al. International Journal of Pharmaceutics,2018,545(1-2),261.
32 Kester M, Shanmugavelandy S S, Fox T. U.S. patent application, US8747891 B2,2014.
33 Fiallo M M, Garnier-Suillerot A, Matzanke B, et al. Journal of Inorganic Biochemistry,1999,75(2),105.
34 Taggar A S, Alnajim J, Anantha M, et al. Journal of Controlled Release,2006,114(1),78.
35 Yao Q, Gutierrez D C, Hoang N H, et al. Molecular Pharmaceutics,2017,14(7),2378.
36 Yang Z, Sun N, Cheng R, et al. Biomaterials,2017,147,53.
37 Nehate C, Moothedathu R A A, Haridas V, et al. Biomacromolecules,2018,19(7),2549.
38 Laskar P, Dey J, Ghosh S K. Journal of Colloid and Interface Science,2017,501,22.
39 Lin T, Fang Q, Peng D, et al. Drug Delivery,2013,20(7),277.
40 Yassin M A, Appelhans D, Wiedemuth R, et al. Small,2015,11(13),1580.
41 Pavot V, Berthet M, Resseguier J, et al. Nanomedicine,2014,9(17),2703.
42 Xiong X Y, Li Q H, Li Y P, et al. Colloids and Surfaces B-Biointerfaces,2013,111,282.
43 Liang Y, Peng X, Chen Y, et al. RSC Advances,2015,5(73),59014.
44 Wang H, Zhao Y, Wu Y, et al. Biomaterials,2011,32(32),8281.
45 Qin Y, Zhang Z, Huang C, et al. Journal of Biomedical Nanotechnology,2018,14(10),1705.
46 Chen K T J, Gilabert-Orial R, Bally M B, et al. Pharmaceutical Research,2019,36(9),125.
47 Tardi P G, Dos S N, Harasym T O, et al. Molecular Cancer Therapeutics,2009,8(8),2266.
48 Lancet J E, Uy G L, Cortes J E, et al. Journal of Clinical Oncology,2018,36(26),2684.
49 Wang Q, Banerjee K, Vasilinin G, et al. Journal of Clinical Pharmacology,2019,59(5),748.
50 Tardi P, Harasym T, Bermudes D, et al. Cancer Research,2009,69,1.
51 Parsels L A, Parsels J D, Tai D C H, et al. Cancer Research,2004,64(18),6588.
52 Batist G, Gelmon K A, Chi K N, et al. Clinical Cancer Research,2009,15(2),692.
53 Mackay J A, Chen M, Mcdaniel J R, et al. Nature Materials,2009,8(12),993.
54 Ma Y, Fan X, Li L. Carbohydrate Polymers,2016,137,19.
55 Yang M, Ding H, Zhu Y, et al. Colloids and Surfaces B-Biointerfaces,2019,175,126.
56 Wan X, Beaudoin J J, Vinod N, et al. Biomaterials,2019,192,1.
57 Liu B, Han L, Liu J, et al. International Journal of Nanomedicine,2017,12,955.
58 Zhang J, Li J, Shi Z, et al. Acta Biomaterialia,2017,58,349.
59 Karavasili C, Andreadis D A, Katsamenis O L, et al. Molecular Pharmaceutics,2019,16(6),2326.
60 Qu C Y, Zhou M, Chen Y W, et al. International Journal of Nanomedicine,2015,10,3911.
61 Duan W, Liu Y. Drug Design, Development and Therapy,2018,12,2149.
62 Tian J, Min Y, Rodgers Z, et al. Journal of Materials Chemistry B,2017,5(30),6049.
63 Yang J, Ju Z, Dong S. Drug Delivery,2017,24(1),792.
64 Zhang Y, Yang C, Wang W, et al. Scientific Reports,2016,6,21225.
65 Duan J, Mansour H M, Zhang Y, et al. International Journal of Pharmaceutics,2012,426(1-2),193.
66 Zhao X, Chen Q, Li Y, et al. European Journal of Pharmaceutics and Biopharmaceutics,2015,93,27.
67 Li Y, Liu R, Yang J, et al. Biomaterials, 2014, 35(36),9731.
[1] 梁旭华, 樊君, 赵艳艳, 王永波, 程敏, 潘婷婷. 基于近红外光的纳米药物输送系统研究进展[J]. 材料导报, 2019, 33(9): 1575-1582.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed