Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z1): 39-42    
  无机非金属及其复合材料 |
500 keV质子辐照对氧化石墨烯薄膜材料的影响研究
他进国1, 黄一凡2, 甄小娟3
1 兰州工业学院材料工程学院,兰州 730050;
2 兰州城市学院电子与信息工程学院,兰州 730000;
3 兰州空间技术物理研究所真空技术与物理重点实验室,兰州 730000
The 500 keV Proton Irradiation Effect on Graphene Oxide Film Materials
TA Jinguo1, HUANG Yifan2, ZHEN Xiaojuan3
1 School of Materials Engineering, Lanzhou Institute of Technology, Lanzhou 730050, China;
2 School of Electronics and Information Engineering, Lanzhou City University, Lanzhou 730000, China;
3 Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physical, Lanzhou 730000, China
下载:  全 文 ( PDF ) ( 3594KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 新兴的二维石墨烯材料因其优异的导电、导热性、力学性能等,是目前各领域研究的热点。本工作利用地面模拟设备研究了PET基底上氧化石墨烯薄膜材料的质子辐射效应。分别对500 keV质子辐照前后的氧化石墨烯薄膜材料进行了XPS、Raman以及XRD分析,得到了质子辐照对材料表面化学组成、结构以及辐射缺陷的影响。结果表明,在质子辐照注量达到2×1015/cm2时,材料表面发生了明显变化,薄膜颜色由棕黄色变为了黑色,主要是因为材料在质子辐照作用下发生了脱氧行为,使得材料中的含氧基团减少。XPS测试结果表明,随着辐照注量的增加,材料中的碳氧原子比不断增大。Raman测试结果表明,辐照后不仅使得材料中的缺陷增多,而且材料结构也发生了严重的无序化转变。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
他进国
黄一凡
甄小娟
关键词:  氧化石墨烯薄膜  质子辐射  结构变化  表面化学组成    
Abstract: The extraordinary physical and mechanical properties have raised concern about two dimensional graphene materials which exhibit outstanding characteristics in the aspect of electricity and thermal conductivity, good mechanical strength. This emerging nano carbon material has brought about extensive attention in space engineering. Graphene oxide film (GOF) on the PET substrate was irradiated with 500 keV proton for different total fluence in a ground-based irradiation simulator. The change of chemical composition, structural defects of GOF before and after irradiation with 2×1015 /cm2 was measured using XPS, Raman spectroscopy and XRD, respectively. The results showed that the color of film wax changed from black to brown, which was caused by the decrease of oxygen functional group. The results indicated the more number of defect and the seriously disorder structure were attributed to the displacement of carbon atom under the impact of inject proton.
Key words:  graphene oxide film    proton irradiation    structure change    surface chemical composition
                    发布日期:  2020-07-01
ZTFLH:  TL72  
基金资助: 国家自然科学基金青年基金(11605079)
作者简介:  他进国,2014年6月毕业于兰州理工大学,获得硕士学位,主要从事活性焊接及纳米材料的研究;黄一凡,2014年6月毕业于兰州大学,获得博士学位,主要从事纳米材料的研究。
引用本文:    
他进国, 黄一凡, 甄小娟. 500 keV质子辐照对氧化石墨烯薄膜材料的影响研究[J]. 材料导报, 2020, 34(Z1): 39-42.
TA Jinguo, HUANG Yifan, ZHEN Xiaojuan. The 500 keV Proton Irradiation Effect on Graphene Oxide Film Materials. Materials Reports, 2020, 34(Z1): 39-42.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ1/39
1 邢悦,郝思嘉,陈宇滨,等.新材料产业,2016(10),24.
2 刘宇,刘勇,左春艳,等.宇航材料工艺,2017,47(4),1.
3 吴凯,张铁军,姚为,等.宇航材料工艺,2017,47(6),1.
4 Gu J J, Huang L R, Shi W Q, et al. Journal of Physics:Condensed Matter,2019,554,40.
5 Ilyin A M, Guseinov N R, Nemkaeva R R, et al. Nuclear Instruments and Methods in Physics Research B,2013,315,192.
6 Wu X, Zhao H Y, Yan D, et al. Computational Materials Science,2017,129,184.
7 Giuseppe Compagnini, Filippo Giannazzo, Sushant Sonde, et al. Carbon,2009,47,3201.
8 Teweldebrhan D, Balandin A A. http://www.ndl.ee.ucr.edu.
9 Wu X, Zhao H Y, Yan D, et al. Computational Materials Science,2017,129,184.
10 Fischbein M D, Drndić M. Applied Physics Letters,2008,93,107.
11 Kim K J, Choi J, Lee H, et al. The Journal of Physical Chemistry C,2008,112,13062.
12 Liu X, Pu J, Wang L, et al. Journal of Materials Chemistry A,2013,1,3797.
13 Loeblein M, Bolker A, Tsang S H, et al. Small,2015,11,6425.
14 Fan X, Wang L. Scientific Reports,2015,5,12734.
15 Malinský P, Macková A, Mikšová R, et al. Physical Chemistry Chemical Physics,2017,19(16),10282.
16 Teng Chao, Xie Dan, Wang Jianfeng,et al. Advanced Functional Mate-rials,2017,27(20),1700240.
17 Lee Sanggeun, Seo Jungmok, Hong Juree, et al. Applied Surface Science,2015,344,52.
18 Zhen X J, Huang Y F, Yang S S, et al. Materials Letters, DOI:10.1016/j.matlet.
19 Voitsihovska O O, Rudenko R M, Povarchuk V Y. Materials Letters,2019, 236,334.
20 Malinsky Petr, Cutroneo Mariapompea, Macková Anna, et al. Surface & Coatings Technology,2018,342,220.
21 Ludovic F Dumee, Chunfang Feng, Li He, et al. Applied Surface Science,2014,322,126.
22 Chen L, Xu Z, Li J, et al. Materials Letters,2011,65(8),1229.
23 Petr Malinsky, Anna Macková, Marketa Florianová, et al. Physica Status Solidi B,2019,256,1800409.
24 Mathew S, Chan T K, Zhan D, et al. Journal of Applied Physics,2011,110(8),084309.1.
25 Anthea Agius Anastasi, Andrea Valsesib, Pascal Colpo, et al. Diamond & Related Materials,2018,89,163.
26 Stobinski L, Lesiak B, Malolepszy A, et al. Journal of Electron Spectroscopy and Related Phenomena,2014,195,145.
27 Yang J Q, Li X J, Liu C M, et al. Chinese Physics B,2015,24(11),116103.
28 Yu Wei, Xie Huaqing, Li Fengxian, et al. Applied Physics Letters,2013,103(14),1.
29 Jackie D Renteria, Sylvester Ramirez, Hoda Malekpour, et al. Advanced Functional Materials,2015,25(29),4664.
30 Kumar S, Kumar A, Tripathi A et al. Journal of Applied Physics,2018,123,161533.
31 Jayalakshmi G, Kothalamuthu S, Panigrahi B K,et al. Nanotechnology,2018,29,185701.
[1] 易鹏,吴国娟,段文焱,吴敏,潘波. 生物炭的改性和老化及环境效应的研究进展[J]. 材料导报, 2020, 34(3): 3037-3043.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed