Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z1): 341-344    
  金属与金属基复合材料 |
中阶梯光栅厚铝膜纳米压痕硬度尺寸效应测试与分析
张宝庆, 庞壮, 韦赟杰, 于硕
长春理工大学机电工程学院,长春 130022
Testing and Analysis of Indentation Size Effect AboutEchelle Grating Thick Al Film
ZHANG Baoqing, PANG Zhuang, WEI Yunjie, YU Shuo
School of Mechanical and Electrical Engineering,Changchun University of Science and Technology, Changchun 130022
下载:  全 文 ( PDF ) ( 3520KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了明确中阶梯光栅厚铝膜硬度特性,从而为中阶梯光栅刻划刀具晶体结构设计奠定基础,对中阶梯光栅厚铝膜进行了纳米压痕硬度测试与分析,表征了厚铝膜硬度特性。首先,对厚铝膜进行纳米压痕试验并提取了试验数据,采用O&P法计算了其硬度值。然后,通过对硬度值的拟合与分析,得出厚铝膜的硬度变化规律与宏观硬度值。实验与分析结果表明:中阶梯光栅厚铝膜在纳米压痕测试过程中会出现尺寸效应(0~0.2 μm压深区间),并且不是单一随着压深增大而减小,而是呈现三个明显的变化区域,并且采用Almasri&Voyiadji模型表征了厚铝膜在压深为0~0.2 μm区间的硬度变化特性。硬度值在压深为10~15 nm区间再次出现了三个明显变化区域;因此笔者对厚铝膜进行了金相试验与压入过程的接触分析,试验与分析结果表明:10~15 nm压深区域产生这种现象的原因是厚铝膜晶体发生了屈服。本研究具体表征了中阶梯光栅铝膜纳米压痕硬度尺寸效应变化规律,从晶体力学角度解释了极浅压深条件下硬度值变化的原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张宝庆
庞壮
韦赟杰
于硕
关键词:  中阶梯光栅  纳米压痕硬度  压痕尺寸效应    
Abstract: In order to test the hardness characteristic of echelle grating thick Al film, so as to building blocks for the design of rulling tool, we test the echelle grating thick Al film by nanoindentation, and characteristic hardness about echelle grating thick Al film. First, we test hardness by using nanoindentation, and use the method of O&P to calculate hardness. Second, through the fitting and analysis of nanoindentation data, we know the hardness change rule and macroscopical hardness value of thick Al film. Estimates show that echelle grating thick Al film will occur indentation size effect in the nanoindentation testing (0—0.2 μm), and this phenomenon will show three regions, it do not decreases as the depth of compression increases.We use the method of Almasri & Voyiadji to characteristic this phenomenon that indentation size effect in the nanoindentation testing(0—0.2 μm). The hardness reappear change in 10—15 nm region, so we make contact analysis and metallographic test for thick Al film. Estimates show that thick Al film crystals is yield. In this paper, the indentation size effect of echelle grating thick Al film is characterized, and the reason of hardness change is explained from the perspective of crystal mechanics.
Key words:  echelle grating    nanoindentation hardness    indentation size effect
                    发布日期:  2020-07-01
ZTFLH:  TP394  
基金资助: 国家自然科学基金(51575057)
作者简介:  张宝庆,博士,副教授,2003年于长春工业大学获得硕士学位,2014年于长春理工大学获得博士学位,现为长春理工大学机电工程学院副教授,主要从事精密与超精密加工及检测研究;庞壮,助理工程师,2015年于长春工程学院获得学士学位,现为长春理工大学机电工程学院在读硕士,主要从事纳米压痕检测技术研究。
引用本文:    
张宝庆, 庞壮, 韦赟杰, 于硕. 中阶梯光栅厚铝膜纳米压痕硬度尺寸效应测试与分析[J]. 材料导报, 2020, 34(Z1): 341-344.
ZHANG Baoqing, PANG Zhuang, WEI Yunjie, YU Shuo. Testing and Analysis of Indentation Size Effect AboutEchelle Grating Thick Al Film. Materials Reports, 2020, 34(Z1): 341-344.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ1/341
1 丁健生,史国权,石广丰.光学精密工程,2015,23(10),2843.
2 孙梦至,高劲松,李资政,等.中国光学,2016,9(6),656.
3 张宝庆,史国权,石广丰,等.光学精密工程,2013,21(7),1666.
4 吉日嘎兰图.中国光学,2014,7(2),301.
5 Oliver W C, Pharr G M. Journal of Materials Research,1992,7(6),1564.
6 Nix W D, Gao H. Journal of the Mechanics and Physics of Solids,1998,46(3),411.
7 Pharr G M, Herbert E G, Gao Y. Annual Review of Materials Research,2010,40(1),271.
8 Almasri A H, Voyiadjis G Z. Acta Mechanica,2010,209(1-2),1.
9 周亮,姚英学.机械工程学报,2006(S1),84.
10 Al-Rub R K A, Voyiadjis G Z. International Journal of Plasticity,2004,20(6),1139.
11 孙梦至.大面积高质量中阶梯光栅厚铝膜特性和制备工艺研究.硕士学位论文,中国科学院研究生院(长春光学精密机械与物理研究所),2015.
12 吴东.高精度金刚石玻氏压头的设计方法及其机械研磨技术研究.硕士学位论文,哈尔滨工业大学,2015
13 徐秉业.接触力学,高等教育出版社,1985
14 哈宽富.金属力学性质的微观理论,科学出版社,1983.
15 王自强,段祝平.塑性细观力学,科学出版社,1995.
No related articles found!
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed