Please wait a minute...
材料导报  2020, Vol. 34 Issue (9): 9028-9033    https://doi.org/10.11896/cldb.19040087
  材料与可持续发展(三)—环境友好材料与环境修复材料* |
完全氧化和部分氧化反应中CuMnOx的不同活性相
唐源桃1,2, 张海东1,2,3, 陈佳1,2, 申渝2,3, 熊昆1,2, 周玉凤1,2, 李晓捷1,2, 胡玥玥1,2
1 教育部废油资源化技术与装备工程研究中心,重庆 400067
2 重庆市催化与环境新材料重点实验室,催化理论与应用技术重庆高校市级重点实验室,重庆 400067
3 重庆工商大学国家智能制造服务国际科技合作基地,重庆 400067
Different Active Phases of CuMnOx for Total Oxidation and Partial Oxidation
TANG Yuantao1,2, ZHANG Haidong1,2,3, CHEN Jia1,2, SHEN Yu2,3, XIONG Kun1,2, ZHOU Yufeng1,2, LI Xiaojie1,2, HU Yueyue1,2
1 Research Center for Waste Oil Recovery Technology and Equipment of Ministry of Education of the People’s Republic of China,Chongqing 400067, China
2 Chongqing Key Laboratory of Catalysis and New Environmental Materials, Key Laboratory of Catalysis Science and Technology of Chongqing Education Commission,Chongqing 400067, China
3 National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
下载:  全 文 ( PDF ) ( 2320KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 完全氧化和部分氧化反应的目标产物完全不同,而铜锰复合氧化物催化剂(CuMnOx)不仅可以催化燃烧挥发性有机物(VOCs)这样的完全氧化反应,也可以催化醇类选择氧化制醛酮这样的部分氧化反应。CuMnOx结构复杂,且对制备方法具有高度敏感性,制备方法的微小差别就可导致催化剂结构的显著差异。CuMnOx中存在不同价态的CuOx、MnOx物种,还可生成尖晶石型或者无定形的铜锰复合氧化物。CuMnOx中的这些物种在完全氧化反应和部分氧化反应中都可能存在一定的催化活性,研究者对CuMnOx的活性相还没有完全统一的认识。
在醇类部分氧化反应中,CuMnOx所含的尖晶石型铜锰复合氧化物能提供移动性强的表面吸附氧物种、具有吸附-活化分子氧功能的表面氧空位以及晶格氧等多种活性氧物种。在VOCs完全氧化反应中,富含具有吸附反应物能力的Mn4+的尖晶石型铜锰复合氧化物,具有较强的氧化还原能力,表现出高催化活性。含有丰富的Mn3+的无定形铜锰复合氧化物也具有高催化活性,无定形铜锰复合氧化物表面发生Cu2++Mn3+ →Cu++Mn4+氧化还原反应是其具有高催化活性的原因。尖晶石型铜锰复合氧化物和氧化铜/氧化锰形成的复合物也可能是完全氧化反应的活性相,其中MnOx由于具备较强的储氧/释氧能力可以为尖晶石型铜锰复合氧化物提供充足的氧物种,而高度分散的CuOx能提高活化分子氧的能力,从而提高催化剂在完全氧化反应中的催化能力。
本文归纳了CuMnOx在部分氧化醇类及完全氧化VOCs反应中的活性相的研究进展,对尖晶石CuxMn3-xO4物种作为部分氧化醇类活性相进行介绍,并分析其在部分氧化反应中的氧化机理。分别对无定形Cu-Mn-O物种在完全氧化反应中的作用、尖晶石CuxMn3-xO4物种在完全氧化反应中的作用、尖晶石CuxMn3-xO4物种和氧化铜或氧化锰的复合体在完全氧化反应中的作用进行介绍,为开发高效的完全氧化和部分氧化催化剂提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐源桃
张海东
陈佳
申渝
熊昆
周玉凤
李晓捷
胡玥玥
关键词:  CuMnOx  活性相  部分氧化  完全氧化    
Abstract: The target products of total oxidation and partial oxidation are completely different. CuMnOx can catalyze total oxidation and partial oxidation reactions like the catalytic combustion of volatile organic compounds (VOCs) and the partial oxidation of alcohols to aldehydes and ketones. CuMnOx have very complex structure which is highly sensitive to their preparation strategies. Such a high sensitivity implies that a tiny change of preparation method can lead to significant differences in catalyst structure. CuOx and MnOx species with different valence states as well as spinel phase or amorphous Cu-Mn mixed oxide can be found in CuMnOx. These species are all active in either total oxidation or partial oxidation. Howe-ver, researchers have not achieved a consensus for the active phase of CuMnOx.
In the partial oxidation reactions of alcohols, the active phase of CuMnOx is spinel Cu-Mn mixed oxide, which can provide a variety of active oxygen species, movable surface adsorbed oxygen species, surface oxygen vacancy and lattice oxygen species. In the total oxidation reactions of VOCs, the spinel Cu-Mn mixed oxide with high content of Mn4+, which can adsorb reactants, present high redox performance and therefore exhibit high catalytic activity. The amorphous Cu-Mn-O species with abundant Mn3+ is also highly active due to the reaction (Cu2++Mn3+→Cu++Mn4+) carrying on catalyst surface. The mixtures of spinel and MnOx or CuOx were found to be active in the total oxidation reactions. In such a mixture, MnOx species can provide sufficient molecular oxygen for the spinel species due to their high storage-release capacity of oxygen species while highly dispersed CuOx species can activate molecular oxygen.
Herein, a summary of the active phases of CuMnOx in both the partial oxidation of alcohols and the total oxidation of VOCs was taken. An introduction to spinel CuxMn3-xO4 species as the active phase of the partial oxidation of alcohols and the analyzing of the partial oxidation reaction mechanism on these species were demonstrated. In order to offer an useful clue to the development of highly effective catalysts for partial oxidation and total oxidation, the roles of amorphous Cu-Mn-O species, spinel CuxMn3-xO4 species, the mixtures of spinel CuxMn3-xO4 species and copper oxide or manganese oxide compounds in total oxidation were discussed, respectively.
Key words:  CuMnOx    active phase    partial oxidation    total oxidation
                    发布日期:  2020-04-27
ZTFLH:  O643  
基金资助: 国家自然科学基金(U1362105;21606028);重庆市科委基础与前沿研究(cstc2017jcyjAX0192;cstc2017jcyjAX0209;cstc2018jcyjAX0638);重庆市高校催化理论与应用技术重点实验室开放基金(CQCM-2017-05)
通讯作者:  haidongzhang@ctbu.edu.cn   
作者简介:  唐源桃,2017年毕业于攀枝花学院并进入重庆工商大学攻读化学工程专业硕士研究生,研究方向为催化氧化反应与金属氧化物纳米功能材料。
张海东,博士,研究员(三级教授),巴渝学者特聘教授。2005年毕业于大连化物所,主要从事新型多相/均相催化反应、新型环境催化材料等研究。
引用本文:    
唐源桃, 张海东, 陈佳, 申渝, 熊昆, 周玉凤, 李晓捷, 胡玥玥. 完全氧化和部分氧化反应中CuMnOx的不同活性相[J]. 材料导报, 2020, 34(9): 9028-9033.
TANG Yuantao, ZHANG Haidong, CHEN Jia, SHEN Yu, XIONG Kun, ZHOU Yufeng, LI Xiaojie, HU Yueyue. Different Active Phases of CuMnOx for Total Oxidation and Partial Oxidation. Materials Reports, 2020, 34(9): 9028-9033.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19040087  或          http://www.mater-rep.com/CN/Y2020/V34/I9/9028
1 Hu J, Li W B, Liu R F. Catalysis Today,2018,314,147.
2 Wei G l, Liu P, He H P. Applied Surface Science,2019,464,287.
3 Sunghoon Hong, Sujeong Heo, Bo Kyeong Jeon. Journal of Nanoscience and Nanotechnology,2018,18(1),353.
4 Li Yingjie, Yang Huai, Zhang Yuechao, et al. Chemical Engineering Journal,2018,346,621.
5 Roushown Ali, Kholoud Nour, Abdulrahman Al-warthan, et al. Arabian Journal of Chemistry,2015,8(4),512.
6 Chi-Woong Ahn, Young-Woo You, Iljeong Heo, et al. Journal of Industrial and Engineering Chemistry,2017,47,439.
7 Fernando Gómez-Villarraga, Jórg Radnik, Andreas Martin, et al. Journal of Nanoparticle Research,2016,18(6),141.
8 Luo Yongjin, Zuo Jiachang, Feng Xiaoshan, et al. Chemical Engineering Journal,2019,357,395.
9 Niu J R, Qian H L, Liu J, et al. Journal of Hazardous Materials,2018,357,332.
10 Wang Hongpei, Lu Yiyuan, Han Yuxiang, et al. Applied Surface Science,2017,420,260.
11 Květa Jirátová, František Kovanda, Jana Ludvíková, et al. Catalysis Today,2016,277,61.
12 Genuino H C, Dharmarathna S, Njagi E C, et al. The Journal of Physical Chemistry C,2012,116(22),12066.
13 Li Xiaoqiang, Xu Jie, Zhou Lipeng, et al. Catalysis Letters,2006,110(3-4),255.
14 Cui Wenjing, Xiao Qi, Sarina Sarina, et al. Catalysis Today,2014,235,152.
15 Adil S F, Assal M E, Kuniyil M, et al. Materials Express,2017,7(2),79.
16 Zhao Guofeng, Fan Songyu, Tao Longgang, et al. ChemCatChem,2016,8(2),313.
17 Ma Wenxi, Tong Qiaoling, Wang Jian, et al. RSC Advances,2017,7(11),6720.
18 Gurrala L, Nagpure A S, Gurav H R, et al. Chemistry Select,2018,3(13),3751.
19 Tang Qinghu, Gong Xiaonan, Zhao Peizheng, et al. Applied Catalysis A: General,2010,389(1-2),101.
20 Subrata Saha, Sharifah Bee Abd Hamid. RSC Advances,2016,6(98),96314.
21 Gregorio Marbán, Teresa Valdés-Solís, Antonio B Fuertes. Catalysis Letters,2007,118(1-2),8.
22 María Roxana Morales, Bibiana P Barbero, Luis E Cadús. Fuel,2008,87(7),1177.
23 Papavasiliou J, Avgouropoulos G, Ioannides T. Catalysis Communications,2005,6(7),497.
24 Yohei Tanaka, Tatsuya Takeguchi, Ryuji Kikuchi, et al. Applied Catalysis A General,2005,279(1),59.
25 Lu H, Kong X, Huang H, et al. Journal of Environmental Sciences (China),2015,32,102.
26 Tang Wenxiang, Wu Xiaofeng, Li Shuangde, et al. Applied Catalysis B Environmental,2015,162,110.
27 Li Zhixun, Wang Honglei, Wu Xingxing, et al. Applied Surface Science,2017,403,335.
28 Huang Yongchao, Ye Kaihang, Li Haibo, et al. Nano Research,2016,9(12),3881.
29 Choi Ki-Hwan, Lee Dong-Hee, Kim Hyo-Sub, et al. Industrial & Engineering Chemistry Research,2016,55(16),4443.
30 Young-Chan Son, Vinit D Makwana, Amy R Howell, et al. Angewandte Chemie International Edition,2001,40(22),4280.
31 Park J L, Santosh S K, Argyle M D, et al. Industrial & Engineering Chemistry Research,2018,57(15),5234.
32 Abdelouahab-Reddam Z, Mail R E, Coloma F, et al. Applied Catalysis A: General,2015,494,87.
33 Zhu Anming, Zhou Ying, Wang Yue, et al. Journal of Rare Earths,2018,36(12),1272.
34 Yang Hongling, Ma Chunyan, Zhang Xin, et al. ACS Catalysis,2018,8(2),1248.
35 Kalaitzidou I, Cavoué T, Boreave A, et al. Catalysis Communications,2018,104,28.
36 González-Cobos J, Ruiz-López E, Valverde J L, et al. International Journal of Hydrogen Energy,2016,41(42),19418.
37 Zhou Kaibin, Sun Xiaodan, Yaseen Muhammad, et al. Applied Catalysis A: General,2018,555,138.
38 Fang R, He M, Huang H, et al. Chemosphere,2018,213,235.
39 Miller J H, Aditya B. ChemCatChem,2018,10(23),5511.
40 Deng Lei, Huang Chao, Kan Jiawei, et al. Journal of Rare Earths, 2018,36(3),265.
41 Mazen Eldeeb,Benjamin Akih-Kumgeh. Energies,2018,11(3),512.
42 Subhashish Dey, Ganesh Chandra Dhal, Devendra Mohan, et al. Applied Surface Science,2018,441,303.
43 Chen Hong, Tong Xinli, Li Yongdan. Applied Catalysis A: General,2009,370(1-2),59.
44 Ye Z, Giraudon J M, Nuns N, et al. Applied Catalysis B: Environmental,2018,223,154.
45 Li W B, Liu Z X, Liu R F, et al. Physical Chemistry Chemical Physics,2016,18(33),22794.
46 Pan H Y, Zhao J Y, Zhang X, et al. Kinetics and Catalysis,2018,59(3),296.
47 Papavasiliou J, Avgouropoulos G, Ioannides T. Journal of Catalysis,2007,251(1),7.
48 Lee J, Kim H, Lee H, et al. Nanoscale Research Letters,2016,11(1),6.
49 Song Yong, Liu Lisha, Fu Zhidan, et al. Frontiers of Environmental Science & Engineering,2017,11(2),5.
50 Njagi E C, Chen C H, Genuino H, et al. Applied Catalysis B Environmental,2010,99(1),103.
51 Peng C T, Lia H K, Liaw B J, et al. Chemical Engineering Journal,2011,172(1),452.
52 Melody Kimi, Mohd Muazmil Hadi Jaidie, Suh Cem Pang. Journal of Physics and Chemistry of Solids,2018,112,50.
53 Qian Kun, Qian Zhaoxia,Hua Qing, et al. Applied Surface Science,2013,273,357.
54 Mohamed Assal, Mohammed Shaik, Mufsir Kuniyil, et al. Catalysts,2017,7(12),391.
55 Abubakar Yusuf, Colin Snape, Jun He, et al. Catalysis Reviews,2017,59(3),189.
[1] 刘建坤, 黄静, 蒋廷学, 吴春方, 文佳鑫, 许卓奇, 马小东, 王淑荣. 多氯芳烃类污染物催化降解的研究进展[J]. 材料导报, 2020, 34(5): 5008-5015.
[2] 祝一锋, 黄小钢, 朱文仙, 张攀攀, 唐华东. 原位光催化聚合制备聚(N-乙烯基咔唑)/TiO2纳米复合材料及其光催化性能[J]. 材料导报, 2020, 34(2): 2147-2152.
[3] 林思宇, 曾春梅. 助催化剂NiCoP修饰改性增强半导体TiO2的光催化性能[J]. 材料导报, 2019, 33(24): 4046-4050.
[4] 王红琴, 谢继阳, 安霓虹, 戴云生, 唐春, 刘俊, 沈亚峰, 周伟. 钌基催化剂催化苯部分加氢制环己烯的研究进展[J]. 材料导报, 2019, 33(23): 4016-4024.
[5] 刘大波, 苏向东, 赵宏龙. 光催化分解水制氢催化剂的研究进展[J]. 材料导报, 2019, 33(Z2): 13-19.
[6] 何海峰,寇新秀,吕海亮,白瑞钦,刘欣,靳涛. 聚酰胺胺改性纳米二氧化硅的研究进展[J]. 材料导报, 2019, 33(17): 2882-2889.
[7] 涂盛辉, 徐翀, 戴策, 林立, 彭海龙, 杜军. 双金属纳米Ag/Cu负载TiO2的制备及光催化制氢活性[J]. 材料导报, 2019, 33(16): 2633-2637.
[8] 张甄, 王宝冬, 徐文强, 秦绍东, 孙琦. 黑色二氧化钛纳米材料研究进展[J]. 材料导报, 2019, 33(z1): 8-15.
[9] 郭亚杰, 叶锋, 郭栋, 李帆, 李志浩. 纳米混杂结构NiSe2高效析氢电极制备及其电化学性能[J]. 材料导报, 2018, 32(23): 4084-4088.
[10] 李旭力, 王晓静, 赵君, 李玉佩, 李发堂, 陈学敏. 催化分解水制氢体系助催化剂研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1057-1064.
[11] 夏艺萌, 吴帅, 谭丰, 李卫, 魏清茂, 闵春刚, 杨喜昆. 钴盐阴离子基团对Co-N-C催化剂电催化活性的影响[J]. 《材料导报》期刊社, 2018, 32(3): 362-367.
[12] 吕路强, 沈骏, 向路, 刘双翼, 谢雄, 周猛兵. 碳基纳米结构作为燃料电池催化剂载体的研究进展*[J]. 材料导报, 2017, 31(21): 9-18.
[13] 张佳庆, 张博思, 王刘芳, 范明豪, 谢辉, 李伟. 电线电缆带电燃烧研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 1-9.
[14] 诸婷婷, 谢明明, 龚狄荣. 含半不稳定边臂配体的钛配合物催化丙交酯聚合*[J]. 《材料导报》期刊社, 2017, 31(14): 40-45.
[15] 董奇志, 万汉生, 曾文霞, 余淑敏, 郭灿城, 余刚. 改性碳纳米材料在低温燃料电池中的应用*[J]. CLDB, 2017, 31(9): 81-89.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed