Please wait a minute...
材料导报  2019, Vol. 33 Issue (z1): 337-342    
  金属与金属基复合材料 |
g-C3N4/泡沫镍整体式光催化剂的构建及光氧化去除NO
冉涛, 张骞, 黎邦鑫, 刘旸, 李筠连
西南石油大学材料科学与工程学院,新能源材料及技术研究中心,成都 610500
Construction of g-C3N4/Ni-foam Monolithic Photocatalyst and Removal of NO by Photo-oxidation
RAN Tao, ZHANG Qian, LI Bangxin, LIU Yang, LI Junlian
The Center of New Energy Materials and Technology, School of Materials Science and Engineering, Southwest Petroleum University, Chengdu 610500
下载:  全 文 ( PDF ) ( 5592KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作以泡沫金属(M-foam,M=Ni、Cu、Fe)为载体,采用浸渍法制备了g-C3N4/泡沫金属整体式光催化剂,并分别对三种整体式光催化剂的负载牢固性和光催化活性进行了系统研究,得出泡沫镍为构建整体式光催化剂的最佳载体。对比g-C3N4/泡沫镍与粉体g-C3N4的光催化活性发现,g-C3N4/泡沫镍的一氧化氮(NO)去除率为粉体g-C3N4的1.8倍,表明泡沫镍的引入能明显增强g-C3N4的光催化活性。同时,对g-C3N4/泡沫镍的结构形貌、光学性质以及反应活性物种进行分析,将g-C3N4/泡沫镍光催化活性增强的因素主要归于以下两点:一是泡沫镍的多孔结构提高了g-C3N4的分散度,因而暴露出更多的光催化反应活性位点,从而增强了NO在g-C3N4表面的吸附,提高了反应效率;二是泡沫镍良好的导电性有助于g-C3N4表面电子的转移,从而提高了光生电子-空穴的分离效率。此外,g-C3N4/泡沫镍在光照条件下产生的超氧自由基(·O2-)和羟基自由基(·OH)是光氧化NO生成NO3-的主要反应活性物种。本研究为粉体光催化剂的性能提升和实际应用提供了一种新思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
冉涛
张骞
黎邦鑫
刘旸
李筠连
关键词:  整体式光催化剂  可见光  一氧化氮  光氧化    
Abstract: In this work, g-C3N4/M-foam monolithic photocatalyst was prepared via an impregnation method, which metal foam (M-foam, M=Ni, Cu and Fe) works as supporter. Three different monolithic photocatalysts have been studied systematically for the load stability as well as photocatalytic performance, which revealed that Ni-foam is the best candidate for monolithic photocatalyst formation. The g-C3N4/Ni-foam monolithic photocatalysts exhibited a 1.8 times higher NO removal ratio than powder g-C3N4, indicating the improvement of photocatalytic performance after introduction of Ni-foam. Moreover, by studying the structure, morphology, optical properties and reactive species of g-C3N4/Ni-foam, it is found that the enhancement of photocatalytic performance of g-C3N4/Ni-foam is mainly attributed to the following two reasons: Firstly, the porous structure of Ni-foam can enlarge the dispersibility and provide more active sites for photocatalytic reaction, enhancing the adsorption capacity and photo-degradation efficiency of NO on the surface of g-C3N4; Secondly, the Ni-foam exhibited excellent electron transfer property which can strictly restrict the recombination efficiency of electron-hole pairs. Notably, in this system, superoxide radicals (·O2-) and hydroxyl radicals (·OH) were considered to be the main active species for photo-oxidation of NO to NO3-under illumination over g-C3N4/Ni-foam. This work provide a fresh insight for highly efficient performance and practical application of powder photocatalyst.
Key words:  monolithic photocatalyst    visible light    nitric oxide    photo-oxidation
               出版日期:  2019-05-25      发布日期:  2019-07-05
ZTFLH:  TB332  
基金资助: 四川省国际科技合作与交流研发项目(2017HH0030);四川省青年科技创新研究团队专项计划(2016TD0011)
作者简介:  冉涛,西南石油大学,硕士研究生。2012年9月至2016年6月,在攀枝花学院获得学士学位。2016年9月至今,在西南石油大学攻读硕士研究生。已发表SCI学术论文1篇,申请发明专利2项。张骞,博士,西南石油大学,副教授,硕士研究生导师。2011年毕业于重庆大学材料科学与工程学院。主要研究方向为室内空气净化、整体式催化以及电化学。现为“氧化功能材料与应用”四川省属高校科研创新团队、“能量转换与储存先进材料”四川省青年科技创新团队科研骨干,主持国家自然科学基金、国家重点实验室、四川省教育厅科研项目各1项。发表SCI学术论文10余篇,获得国家发明专利2项。pbdp777@163.com
引用本文:    
冉涛, 张骞, 黎邦鑫, 刘旸, 李筠连. g-C3N4/泡沫镍整体式光催化剂的构建及光氧化去除NO[J]. 材料导报, 2019, 33(z1): 337-342.
RAN Tao, ZHANG Qian, LI Bangxin, LIU Yang, LI Junlian. Construction of g-C3N4/Ni-foam Monolithic Photocatalyst and Removal of NO by Photo-oxidation. Materials Reports, 2019, 33(z1): 337-342.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/Iz1/337
1 Atkinson R. Atmospheric Environment, 2000, 34(12), 2063.
2 Shelef M. Chemical Reviews, 1995, 95(1), 209.
3 Perry R A, Siebers D L. Nature, 1986, 324(6098), 657.
4 Dong G H, Jacobs D L, Zang L, et al. Applied Catalysis B: Environmental, 2017, 218, 515.
5 Yu J J, Jiang Z, Zhu L, et al. The Journal of Physical Chemistry B, 2006, 110(9), 4291.
6 Xiao B, Wheatley P S, Zhao X B, et al. Journal of the American Chemical Society, 2007, 129(5), 1203.
7 Ma L, Li J H, Ke R, et al. The Journal of Physical Chemistry C, 2011, 115(15), 7603.
8 Talebizadeh P, Babaie M, Brown R, et al. Renewable and Sustainable Energy Reviews, 2014, 40, 886.
9 Jolibois J, Takashima K, Mizuno A. Journal of Electrostatics, 2012, 70(3), 300.
10 Ranjit K T, Viswanathan B. Journal of Photochemistry Photobiology A: Chemistry, 2003, 154(2), 299.
11 Wang P, Huang B B, Zhang Q Q, et al. Chemistry—A European Journal, 2010, 16(33), 10042.
12 Tian J, Sang Y H, Yu G W, et al. Advanced Materials, 2013, 25(36), 5075.
13 Fujishima A, Honda K. Nature, 1972, 238(5358), 37.
14 Wang X C, Maeda K, Thomas A, et al. Nature Materials, 2009, 8, 76.
15 Cui W, Li J Y, Cen W L, et al. Journal of Catalysis, 2017, 352, 351.
16 Cui W, Li J Y, Dong F, et al. Environmental Science & Technology, 2017, 51(18), 10682.
17 Xiong T, Cen W L, Zhang Y X, et al. ACS Catalysis, 2016, 6(4), 2462.
18 Dong F, Zhao Z W, Xiong T, et al. ACS Applied Materials & Interfaces, 2013, 5(21), 11392.
19 Dong F, Wang Z Y, Li Y H, et al. Environmental Science & Technology, 2014, 48(17), 10345.
20 Yang Y, Zhang Q, Zhang R Y, et al. Frontiers in Chemistry, 2018, 6, 156
21 Zhang R Y, Ma M Z, Zhang Q, et al. Applied Catalysis B: Environmental, 2018, 235, 17.
22 Ochiai T, Fukuda T, Nakata K, et al. Journal of Applied Electrochemistry, 2010, 40(10), 1737.
23 Chen X Y, Liu L F, Feng Y W, et al. Materials Today, 2017, 20(9), 501.
24 Ai Z H, Ho W K, Lee S C, et al. Environmental Science Technology, 2009, 43(11), 4143.
25 Zhang G G, Zhang J S, Zhang M W, et al. Journal of Materials Chemistry, 2012, 22(16), 8083.
26 Wang X Y, Wang H H, Yu K, et al. Materials Research Bulletin, 2018, 97, 306.
27 Zhang J S, Zhang G G, Chen X F, et al. Angewandte Chemie-International Edition, 2012, 51(13), 3183.
28 Wu C Z, Lu X L, Xu K, et al. Journal of Materials Chemistry A, 2014, 2(44), 18924.
29 Yuan C Z, Li J Y, Hou L R, et al. Advanced Functional Materials, 2012, 22(21), 4592.
30 Wang Z Y, Guan W, Sun Y J, et al. Nanoscale, 2015, 7(6), 2471.
31 Xie Y, Yu S, Zhong Y Q, et al. Applied Surface Science, 2018, 448, 655.
32 Liu Y, Yu S, Zhao Z Y, et al. The Journal of Physical Chemistry C, 2017, 121(22), 12168.
[1] 占昌朝, 曹小华, 金文雄, 叶志刚, 谢宝华, 徐建兴, 周荣辉. 以水杨酸为模板分子的Nd掺杂分子印迹TiO2的制备及光催化性能[J]. 材料导报, 2019, 33(6): 947-953.
[2] 刘钊, 王纪孝, 孙亚伟. 硫酸掺杂聚苯胺涂层的快速表面光热杀菌性能[J]. 材料导报, 2019, 33(14): 2431-2435.
[3] 施露,张杰,陈蓉,沈美庆,单斌. 锰基多元氧化物的NO催化氧化研究进展[J]. 材料导报, 2019, 33(13): 2167-2173.
[4] 李雅明, 李艳军, 张江, 丛野, 崔正威, 袁观明, 董志军, 邹涛, 李轩科. K3V5O14的合成及光催化性能和吸附性能[J]. 材料导报, 2019, 33(12): 1926-1931.
[5] 安伟佳, 田玲玉, 芮玉兰, 高雅萌, 崔文权. Ag@AgCl/Bi2WO6复合光催化剂的制备及可见光催化性能[J]. 材料导报, 2019, 33(12): 1932-1938.
[6] 黄宁岸, 赵梓俨, 邹彦昭, 周莹. 表面处理对Pt/Al2O3光催化氧化NO的影响[J]. 材料导报, 2019, 33(12): 1921-1925.
[7] 林小靖, 孙明轩, 胡梦媛, 姚远, 王文韬. 水热合成的MoS2/石墨烯/N-TiO2复合材料的可见光催化性能[J]. 《材料导报》期刊社, 2018, 32(8): 1213-1217.
[8] 梁红玉, 邹赫, 胡绍争, 李建中, 田彦文. 二元碱金属共掺杂石墨相氮化碳的制备及光催化性能评价[J]. 材料导报, 2018, 32(24): 4217-4223.
[9] 阎鑫, 惠小艳, 闫从祥, 艾涛, 苏兴华, 王振军, 孙国栋, 赵鹏. 类石墨相氮化碳二维纳米片的制备及可见光催化性能研究*[J]. CLDB, 2017, 31(9): 77-80.
[10] 娄冬冬, 张丽莎, 王海风, 陈志钢. 具有三维网状结构的石墨相氮化碳/还原氧化石墨烯/钯复合材料的合成及可见光催化性能*[J]. 《材料导报》期刊社, 2017, 31(20): 1-5.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed