Please wait a minute...
材料导报  2019, Vol. 33 Issue (z1): 297-299    
  金属与金属基复合材料 |
Yb∶MgAg纳米双层阴极的光电特性改善
张金中1, 李坚1, 胡海兵2, 关立伟2
1 重庆京东方显示技术有限公司,重庆 400714
2 鄂尔多斯市源盛光电有限责任公司,鄂尔多斯 017020
Optoelectronic Characteristics Improvement of Nano-bilayer Cathode Yb∶MgAg
ZHANG Jinzhong1, LI Jian1, HU Haibin2, GUAN Liwei2
1 EV Technology Dept. Chongqing BOe Display Technology Co., Ltd., Chongqing 400714
2 Ordos Yuansheng Optoelectronics Co., Ltd., Ordos 017020
下载:  全 文 ( PDF ) ( 1691KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 MgAg纳米合金作为有机电致发光阴极,具有功函数低、稳定性高等优点,而提升Ag的比例,降低MgAg纳米合金的厚度,可提升MgAg的透过率。在蒸镀MgAg纳米合金之前先沉积Yb纳米金属薄层,可降低阴极功函数,减少接触势垒,改善器件效率。实验表明,在Yb膜厚为5 Å、 MgAg膜厚为120 Å、Ag比例为70%的条件下,器件效率能达到红色 41.4 cd/A,绿色94.9 cd/A, 蓝色 103.4 cd/A/CIEy,并具有较低的功耗和较长的寿命。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张金中
李坚
胡海兵
关立伟
关键词:  有机电致发光二极管(OLED)  镁银合金  阴极  透过率  稀有金属镱    
Abstract: As organic light emitting cathode, MgAg nano-alloy has the advantages of low work function and high stability. Increasing the ratio of Ag and reducing the thickness of MgAg nano-alloy can improve the transmittance of MgAg. Embedding Yb nano-metal layer before MgAg nano-alloy can reduce cathode work function, reduce contact barrier and improve device efficiency. ExpEriments show that under Yb 5 Å/MgAg 120 Å, the device efficiency can reach red 41.4 cd/A, green 94.9 cd/A, blue 103.4 cd/A/CIEy, with low power consumption and long life.
Key words:  organic light emitting diode (OLeD)    magnesium-silver alloy (MgAg)    cathode    transmittance    rare metal ytterbium (Yb)
               出版日期:  2019-05-25      发布日期:  2019-07-05
ZTFLH:  TN873.3  
作者简介:  张金中,2009年1月毕业于北京科技大学,获得工程硕士学位。于2009年2月至2013年9月在北京京东方光电科技有限公司,从事液晶显示产品和技术研发工作。于2013年10月至2018年3月在鄂尔多斯市源盛光电有限公司,从事OLED产品生产工作,于2018年3月至今在重庆京东方显示技术有限公司从事OLED产品生产及工艺改善工作。zhangjinzhong_ot@boe.com.c
引用本文:    
张金中, 李坚, 胡海兵, 关立伟. Yb∶MgAg纳米双层阴极的光电特性改善[J]. 材料导报, 2019, 33(z1): 297-299.
ZHANG Jinzhong, LI Jian, HU Haibin, GUAN Liwei. Optoelectronic Characteristics Improvement of Nano-bilayer Cathode Yb∶MgAg. Materials Reports, 2019, 33(z1): 297-299.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/Iz1/297
1 Tang C W, VanSlyke S A. Applied Physics Letters,1987,51,913.
2 Chen S M, Tan G P, Wong W Y, et al. Advanced Functional Materials,2011,21(19),3785.
3 刘国柱, 夏都灵, 杨文君, 等.材料导报,2008,22(6),111.
4 Brown T M, Friend R H, Millard I S, et al. Applied Physics Letters,2001,79(2),174.
5 程君, 张方辉, 李怀坤, 等.光电子·激光,2015,26(11),2050.
6 Man J X, He S J, Wang D K, et al. Organic Electronics,2018,63,41.
7 王俊西, 李宏建, 熊志勇, 等.发光学报,2010,31(1),19.
8 枫红, 田文晶, 吴英.发光学报,2000,21(3),265.
9 李传南, 肖步文, 侯晶莹, 等.光子学报,2001,30(1),86.
10 Ma G L, Ran G Z, Xu A G, et al. Applied Surface Science,2006,252,3580.
[1] 王旭, 廖春发, 王瑞祥, 孙强超. 氟化物介质熔盐电解制备Ni-Yb合金及其表征[J]. 材料导报, 2019, 33(5): 750-753.
[2] 于秀玲, 梁雪梅, 李雪. 掺杂不同价态离子的SrFeO3-δ钙钛矿氧化物的电化学性能[J]. 材料导报, 2019, 33(14): 2305-2310.
[3] 陈雷行, 苏金瑞, 何豪, 张宗镇, 蔡彬. 质子导体固体氧化物燃料电池的PrBa0.5Sr0.5Cu2O6-δ复合阴极材料[J]. 材料导报, 2019, 33(10): 1615-1618.
[4] 魏金枝,王雪亮,孙晓君,张凤鸣. 绿色电化学法合成金属有机骨架材料的研究现状[J]. 《材料导报》期刊社, 2018, 32(9): 1435-1441.
[5] 周丹, 秦元成, 徐海涛, 李明俊. 有机太阳能电池阴极界面层概述[J]. 材料导报, 2018, 32(13): 2143-2150.
[6] 王旭,廖春发,焦芸芬,汤浩. 氟盐-氧化物体系电解制备Al-Cu-Y合金的电极还原过程研究*[J]. 材料导报编辑部, 2017, 31(22): 50-54.
[7] 张乐, 周天元, 陈浩, 杨浩, 张其土, 宋波, 汪正平. Nd∶YAG激光透明陶瓷的研究进展*[J]. 《材料导报》期刊社, 2017, 31(13): 41-50.
[8] 常春蕊, 赵宏微, 刁加加, 安立宝. 基于碳纳米管薄膜构建场发射平面显示器的阴极结构[J]. 材料导报, 2017, 31(1): 56-63.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed