Please wait a minute...
材料导报  2019, Vol. 33 Issue (z1): 229-233    
  无机非金属及其复合材料 |
两阶段变速搅拌对高强混凝土稳定性的影响
胡建伟1, 谢永江1,2, 刘子科1,2, 翁智财1,2, 王月华1,2, 何龙1,2
1 中国铁道科学研究院,北京 100081
2 高速铁路轨道技术国家重点实验室,北京 100081
The Effect of Two-stage Variable-speed Mixing on the Stability of High-strength Concrete
HU Jianwei1, XIE Yongjiang1,2, LIU Zike1,2, WENG Zhicai1,2, WANG Yuehua1,2, HE Long1,2
1 China Academy of Railway Science, Beijing 100081
2 State Key Laboratory for Track Technology of High-speed Railway, Beijing 100081
下载:  全 文 ( PDF ) ( 3823KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用不同搅拌工艺制备高强混凝土并进行混凝土稳定性试验,研究搅拌工艺对混凝土气泡结构参数、密度、抗压强度和显微硬度的影响规律。结果表明:两阶段变速搅拌工艺可以较好地改善混凝土拌合物的气泡结构,直径不超过500 μm的气泡含量明显提高;两阶段变速搅拌工艺显著降低了混凝土上、下层密度差,对混凝土抗压强度改善不明显,但显著降低了抗压强度离散系数;两阶段变速搅拌可降低混凝土分层趋势,显微硬度差值梯度降低,提高了混凝土的稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡建伟
谢永江
刘子科
翁智财
王月华
何龙
关键词:  搅拌工艺  高强混凝土  稳定性  气泡结构参数  抗压强度  显微硬度    
Abstract: The high-strength concrete was prepared by different mixing approaches and the concrete stability test was carried out. The influence of mi-xing approach on the bubble structural parameters, density, compressive strength and microhardness of concrete was studied. The results show that two-stage variable-speed mixing approach can better improve the bubble structure of fresh concrete. The bubble content increases obviously, which is less than 500 μm. The two-stage variable-speed mixing approach reduces the density difference between the upper and lower layers of concrete significantly. The improvement of compressive strength of concrete is not obvious, but the compressive strength dispersion coefficient is significantly reduced. The two-stage variable-speed mixing approach can reduce the stratification trend of concrete, reduce the microhardness difference gradient, and improve the stability of concrete
Key words:  mixing approach    high-strength concrete    stability    bubble structural parameters    compressive strength    microhardness
               出版日期:  2019-05-25      发布日期:  2019-07-05
ZTFLH:  TU528  
基金资助: 国家重点研发计划(2017YFB0310000);中国铁道科学研究院基金项目(2017YJ043)
作者简介:  胡建伟,1988年9月生,中国铁道科学研究院桥梁与隧道工程专业博士生,主要从事水泥混凝土制品工艺、早强纳米材料的合成与应用等方面的工作。参与国家重点研发计划、铁路总公司科技项目以及中国铁道科学研究院基金项目等5项。谢永江,1964年6月生,建筑材料学硕士,研究员,博士研究生导师。现任中国铁道科学研究院集团有限公司工程材料事业部主任,铁路工程材料领域学术带头人。长期从事铁路工程材料、混凝土制品以及混凝土施工技术研究工作。主持和参加完成国家863、973、国家自然科学基金、科技部、铁道部以及铁路总公司科技攻关项目等54项,获国家科技特等奖1项、省部级奖16项,获授权国家专利40项,发表学术论文102篇,主编和参编国家及行业标准27项。xieyj2004@sina.com
引用本文:    
胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
HU Jianwei, XIE Yongjiang, LIU Zike, WENG Zhicai, WANG Yuehua, HE Long. The Effect of Two-stage Variable-speed Mixing on the Stability of High-strength Concrete. Materials Reports, 2019, 33(z1): 229-233.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/Iz1/229
1 同济大学,重庆建筑学院,武汉建筑工业学院. 混凝土制品工艺学,中国建筑工业出版社,1986.
2 Ferraris C F. Journal of Research of the National Institute of Standards and Technology,2001,106(2),391.
3 Yang M, Jennings H M. Advanced Cement Based Materials,1995,2(2),70.
4 Aiad I, Abd El-Aleem S, El-Didamony H. Cement and Concrete Research,2002,32(11),1839.
5 Pavid A Williams, Aaron Wsaak, Hamlin M Jennings. Cement and Concrete Research,1999,29(9),1491.
6 Zhang S H, Wang K J. Journal of Astm International,2006,3(10),1246.
7 Sokhuan Choi, Surendra P Shah. Journal of Engineering Mechanics,1998,124 (1) ,94.
8 三浦達男.建設機械,1986,22(18),109.
9 Dils J, Boel V. Materials and Structures,2012,45(11),1673.
10 Chang P K, Peng Y N. Cement and Concrete Research,2001,31(1),87.
11 Hemalatha T, Sundar K R R, Murthy A R, et al. Construction and Building Materials,2015,98,119.
12 Collin V, Jézéquel P H. Cement and Concrete Research,2009,39(8),678.
13 冯忠绪,王卫中,姚运仕,等.中国公路学报,2006(2),116.
14 Rejeb Saeed Khalaf. Cement and Concrete Research,1996,26(4),585.
15 Nipat Puthipad, Masahiro Ouchi, Sovannsathya Rath, et al.Construction and Building Materials,2017,144(7),1.
[1] 张笑, 宋武林, 卢照, 曾大文, 谢长生. 纳米二氧化钛分散液稳定性的研究进展[J]. 材料导报, 2019, 33(z1): 16-21.
[2] 王宏, 李方, 张十庆, 何钦生, 张登友, 邹兴政, 赵安中, 谭军. 核场测温用热电偶合金材料的研究[J]. 材料导报, 2019, 33(z1): 398-402.
[3] 郭宝超, 蒋恩, 陈亮. 压水堆驱动机构钩爪激光与GTAW钴基合金堆焊层组织分析及性能表征[J]. 材料导报, 2019, 33(z1): 416-419.
[4] 候昱灼, 廖洪强, 高宏宇, 程芳琴. 不同条件下聚苯颗粒泡沫混凝土的发泡过程及发泡体性能研究[J]. 材料导报, 2019, 33(z1): 234-238.
[5] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[6] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[7] 谢鹏飞, 陈勰, 丁峰, 张乃文, 李建波, 任杰. 缩聚法制备热固性聚乳酸及其力学性能和热稳定性研究[J]. 材料导报, 2019, 33(6): 1042-1046.
[8] 张寒松, 胡志德, 晏华, 薛明, 贾艺凡. 纳米SiO2/黄原胶复合触变剂对磁流变液性能的影响[J]. 材料导报, 2019, 33(6): 1052-1056.
[9] 王恩胜, 余丽萍, 廉世勋, 周文理. 全无机钙钛矿量子点的研究进展[J]. 材料导报, 2019, 33(5): 777-783.
[10] 王子博, 刘满平, 姜奎, 秦希, 章勇, 王圣楠, 陈健. 退火时间对高压扭转Al-1.0Mg铝合金组织及性能的影响[J]. 材料导报, 2019, 33(2): 321-324.
[11] 钟晓聪, 陈芳会, 王瑞祥, 徐志峰. 硫酸体系铅基阳极稳定性研究进展[J]. 材料导报, 2019, 33(17): 2862-2867.
[12] 仇磊, 陈鼎, 朱莉莉, 陈耀彤, 王思远, 冯鹏飞. 氧化石墨烯作为润滑油添加剂的分散稳定性[J]. 材料导报, 2019, 33(16): 2638-2643.
[13] 卫芳彬, 张雷阳, 王颖, 李洋, 刘岗. 二氧化铈掺杂钛酸铋钠基陶瓷的高储能密度及温度稳定性[J]. 材料导报, 2019, 33(16): 2648-2653.
[14] 尹华伟, 李明伟, 周川, 胡志涛. ADP晶体生长过程中的运动方式对晶体性能的影响[J]. 材料导报, 2019, 33(16): 2660-2664.
[15] 常悦, 陈支泽, 杨一奇. 聚乳酸-聚己内酯多嵌段立构复合物薄膜的制备及熔融稳定性[J]. 材料导报, 2019, 33(16): 2808-2812.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed