Please wait a minute...
材料导报  2019, Vol. 33 Issue (z1): 16-21    
  无机非金属及其复合材料 |
纳米二氧化钛分散液稳定性的研究进展
张笑1, 宋武林1,2, 卢照1,2, 曾大文1, 谢长生1
1 华中科技大学材料科学与工程学院,武汉430074
2 华中科技大学分析测试中心,武汉430074
Research Progress on the Stability of Nanometer Titanium Dioxide Dispersion
ZHANG Xiao1, SONG Wulin1,2, LU Zhao1,2, ZENG Dawen1, XIE Changsheng1
1 College of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074
2 Analytical and Testing Center, Huazhong University of Science and Technology, Wuhan 430074
下载:  全 文 ( PDF ) ( 2875KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纳米二氧化钛在20世纪80年代开始进入人们的视线,因具有优良的性能而有着广阔的应用前景。但纳米二氧化钛的粉体粒度很小,比表面积很大,极易自发团聚,最终导致性能下降;并且纳米粉体的存储和使用也是一大问题。为了解决这些问题,制备稳定均匀的纳米二氧化钛分散液成为研究热点。本文综述了关于制备稳定的纳米二氧化钛分散液的研究进展,系统介绍了纳米二氧化钛分散液的制备方法、保持稳定的方法和表征方法,并总结了纳米二氧化钛分散液面临的主要问题,展望了其未来的发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张笑
宋武林
卢照
曾大文
谢长生
关键词:  纳米二氧化钛分散液  稳定性  改进方法  表征技术    
Abstract: Nano-titanium dioxide began to enter people's sights in the 1980s, and has broad application prospects because of its excellent performance. However, the nano-titanium dioxide has a small particle size and a large specific surface area, so it is easily agglomerated spontaneously, which eventually leads to the decline of performance. And the inconvenience of the nano-powder in storage and use is also a big problem. In order to solve these problems, preparation of a stable uniform nano-titanium dioxide dispersion has become a research hotspot. In this paper, the research progress of preparation of stable nanometer titanium dioxide dispersion is reviewed. The preparation method, retention stability method and characterization method of nanometer titanium dioxide dispersion are introduced systematically. Finally, the main problems faced by nano-titanium dioxide dispersion and the prospect of its future development are summarized.
Key words:  nano-titanium dioxide dispersion    stability    improvement method    characterization technique
               出版日期:  2019-05-25      发布日期:  2019-07-05
ZTFLH:  O648.2  
基金资助: 国家自然科学基金(51071073)
作者简介:  张笑,女,在读硕士研究生,就读于华中科技大学材料科学与工程学院,目前主要研究纳米二氧化钛的分散性以及光催化性能。宋武林,男,华中科技大学材料与工程学院教授、博士研究生导师。华中科技大学分析测试中心副主任,现任中国材料研究学会理事,湖北省理化检验学会副理事长,中国分析测试协会理事,湖北省电镜学会常务理事。研究方向:纳米材料制备与应用;材料表面处理,在材料激光表面改性、新型模具材料、纳米材料制备与应用、材料分析测试等研究。wulins@hust.edu.cn
引用本文:    
张笑, 宋武林, 卢照, 曾大文, 谢长生. 纳米二氧化钛分散液稳定性的研究进展[J]. 材料导报, 2019, 33(z1): 16-21.
ZHANG Xiao, SONG Wulin, LU Zhao, ZENG Dawen, XIE Changsheng. Research Progress on the Stability of Nanometer Titanium Dioxide Dispersion. Materials Reports, 2019, 33(z1): 16-21.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/Iz1/16
1 Chang H, Jwo C S, Fan P S, et al. International Journal of Advanced Manufacturing Technology,2007,34(3-4),300.
2 Wang Y, He Y, Lai Q, et al. Journal of Environmental Sciences,2014,26(11),2139.
3 Wang C M, Heller A, Gerischer H. Journal of the American Chemical Society,1992,114(13),5230
4 Li S, Qian W, Tao C, et al. Nanoscale Research Letters,2012,7(1),227.
5 Yue D, Qian X, Zhao Y. Science Bulletin,2015,60(21),1791.
6 Cao J, Wang L, et al. Electrochimica Acta.2013,111,674.
7 Galstyan V. Sensors,2017,17,714.
8 Hagfeldt A, Graetzel M. Chemical Reviews,1995,95,1(1),49.
9 Korayem A H, Tourani N, Zakertabrizi M, et al. Construction and Buil-ding Materials,2017,153,346.
10 Yaremko Z M, Tkachenko N H, Bellmann C, et al. Journal of Colloid and Interface Science,2006,296(2),565.
11 Derjaguin B V, Churaev N V, Muller V M. Surface forces, MA Press, US,1987.
12 Veronovski N, Andreozzi P, La Mesa C, et al. Surface and Coatings Technology,2010,204(9-10),1445.
13 Shao X, Chen Y, Mo S, et al. Energy Procedia,2015,75,2049.
14 Xu J, Li L, Yan Y, et al. Journal of Colloid and Interface Science,2008,318(1),29.
15 Yatsuya S, Tsukasaki Y, Yamauchi K, et al. Journal of Crystal Growth,1984,70(1),533.
16 Choi S U S,Yu W,Hull J R, et al. In: Proceedings of the 2001 Vehicle Thermal Management Systems Conference, Society of Automotive Engineers, United States, 2001.
17 Liu A R, Wang S M, Zhao Y R, et al. Materials Chemistry & Physics,2006,99(1),131.
18 Das P K, Mallik A K, Ganguly R, et al. International Communications in Heat and Mass Transfer,2016,75,341.
19 Swanson E J, Tavares J, Coulombe S. Transactions on Plasma Science,2008,36(4),886.
20 Mahbubul I M, Elcioglu E B, Saidur R, et al. Ultrasonics Sonochemistry,2017,37,360.
21 Chandrasekar M, Suresh S, Bose A C, et al. Experimental Thermal & Fluid Science,2010,34(2),210.
22 Chung S J, Leonard J P, Nettleship I, et al. Powder Technology,2009,194(1),75.
23 Haddad Z, Abid C, Oztop H F, et al. International Journal of Thermal Sciences,2014,76,168.
24 Ghadimi, Azadeh, Metselaar, et al. Experimental Thermal & Fluid Scie-nce,2013,51(11),1.
25 Bailey R, Gray V R. Journal of Chemical Technology & Biotechnology Biotechnology,2010,8(4),197.
26 Jailani S, Franks G V, Healy T W. Journal of the American Ceramic Society,2008,91(4),1141.
27 任俊,卢寿慈. 中国粉体工业,2006(5),13.
28 Yu J, Grossiord N, Koning C E, et al. Carbon,2007,45(3),618.
29 Tajik B, Abbassi A, Saffar-Avval M, et al. Powder Technology,2012,217,171.
30 Naphon P, Nakharintr L. International Journal of Heat and Mass Transfer,2015,82,388.
31 Chen H, Ding Y, et al. New Journal of Physics,2007,9(10),367.
32 Penkavova V, et al. Nanoscale Research Letters,2011,6(1),1.
33 Mandzy N, et al. Powder Technology,2005,160(2),121.
34 Sarafraz M M, Hormozi F, Peyghambarzadeh S M. Applied Thermal Engineering,2015,82,212.
35 Lan X H , Yang S Q , Yu Z , et al. Chinese Physics Letters,2007,24(12),3567.
36 Inkyo M, Tahara T, Iwaki T, et al. Journal of Colloid and Interface Scie-nce,2006,304(2),535.
37 Sen S, Ram M L, Roy S, et al. Journal of Materials Research,1999,14(3),841.
38 Gajovic′A, Stubicar M, Ivanda M, et al. Journal of Molecular Structure,2001,563(2),315.
39 Hwang Y, Lee J K, Lee C H, et al. Thermochimica Acta,2007,455(1-2SI),70.
40 Wang X, Zhu D, Yang S. Chemical Physics Letters,2009,470(1-3),107.
41 Huang J, Wang X, Long Q, et al. In: Symposium on Photonics & Optoelectro-nics. Wuhan,2009.
42 许淳淳,于凯,何宗虎. 化工进展,2003(10),1095.
43 Xia G, Jiang H, Liu R, et al. International Journal of Thermal Sciences,2014,84,118.
44 Wang C, Mao H, Wang C, et al. Industrial & Engineering Chemistry Research,2011,50(21),11930.
45 Li G, Lv L, Fan H, et al. Journal of Colloid and Interface Science,2010,348(2),342.
46 Kamiya H , Iijima M . Science and Technology of Advanced Materials,2010,11(4),44304.
47 Ebrahimnia-Bajestan E, Moghadam M C, Niazmand H, et al. International Journal of Heat and Mass Transfer,2016,92,1041.
48 Said Z, Sabiha M A, Saidur R, et al. Journal of Cleaner Production,2015,92,343.
49 Tsai H, Chang S, Yang T, et al. Ceramics International,2018,44(5),5131.
50 Palabiyik I, Musina Z, Witharana S, et al. Journal of Nanoparticle Research,2011,13(10),5049.
51 Witharana S, Palabiyik I, Musina Z, et al. Powder Technology,2013,239,72.
52 Hamid K A, Azmi W H, Mamat R, et al. International Communications in Heat and Mass Transfer,2016,73,16.
53 Kim J, Nishimura F, Yonezawa S, et al. Journal of Fluorine Chemistry,2012,144,165.
54 Lebrette S, Pagnoux C, Abélard P. Journal of Colloid and Interface Scie-nce,2004,280(2),400.
55 Chou J C, Lan P L. Thin Solid Films,2005,476(1),157.
56 Chen X B. Powder Technology,1998,99(2),171.
57 Sadeghi R, Etemad S G, Keshavarzi E, et al. Microfluidics and Nanoflui-dics,2015,18(5-6),1023.
58 Jiang L Q, Gao L, Sun J. Journal of Colloid and Interface Science,2003,260(1),89.
59 Anushree C, et al. Journal of Molecular Liquids,2016,222,350.
60 Tomaszewska E, Soliwoda K, Kadziola K, et al. Journal of Nanomate-rials,2013,2013,1.
61 Said Z, Saidur R, Hepbasli A, et al. International Communications in Heat and Mass Transfer,2014,58,85.
62 Leroy P, Tournassat C, Bizi M. Journal of Colloid and Interface Science,2011,356(2),442.
63 Chang H, Lin S C. Materials Transactions,2007,48(4),836.
64 Liu W, Sun W, Borthwick A G L, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2013,434,319.
65 Ghadimi A, Saidur R, Metselaar H S C. International Journal of Heat & Mass Transfer,2011,54(17),4051.
66 Jin L, Wu H, Morbidelli M. Nanomaterials,2015,5(3),1454.
[1] 王宏, 李方, 张十庆, 何钦生, 张登友, 邹兴政, 赵安中, 谭军. 核场测温用热电偶合金材料的研究[J]. 材料导报, 2019, 33(z1): 398-402.
[2] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[3] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[4] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[5] 谢鹏飞, 陈勰, 丁峰, 张乃文, 李建波, 任杰. 缩聚法制备热固性聚乳酸及其力学性能和热稳定性研究[J]. 材料导报, 2019, 33(6): 1042-1046.
[6] 张寒松, 胡志德, 晏华, 薛明, 贾艺凡. 纳米SiO2/黄原胶复合触变剂对磁流变液性能的影响[J]. 材料导报, 2019, 33(6): 1052-1056.
[7] 王恩胜, 余丽萍, 廉世勋, 周文理. 全无机钙钛矿量子点的研究进展[J]. 材料导报, 2019, 33(5): 777-783.
[8] 王子博, 刘满平, 姜奎, 秦希, 章勇, 王圣楠, 陈健. 退火时间对高压扭转Al-1.0Mg铝合金组织及性能的影响[J]. 材料导报, 2019, 33(2): 321-324.
[9] 钟晓聪, 陈芳会, 王瑞祥, 徐志峰. 硫酸体系铅基阳极稳定性研究进展[J]. 材料导报, 2019, 33(17): 2862-2867.
[10] 仇磊, 陈鼎, 朱莉莉, 陈耀彤, 王思远, 冯鹏飞. 氧化石墨烯作为润滑油添加剂的分散稳定性[J]. 材料导报, 2019, 33(16): 2638-2643.
[11] 卫芳彬, 张雷阳, 王颖, 李洋, 刘岗. 二氧化铈掺杂钛酸铋钠基陶瓷的高储能密度及温度稳定性[J]. 材料导报, 2019, 33(16): 2648-2653.
[12] 尹华伟, 李明伟, 周川, 胡志涛. ADP晶体生长过程中的运动方式对晶体性能的影响[J]. 材料导报, 2019, 33(16): 2660-2664.
[13] 常悦, 陈支泽, 杨一奇. 聚乳酸-聚己内酯多嵌段立构复合物薄膜的制备及熔融稳定性[J]. 材料导报, 2019, 33(16): 2808-2812.
[14] 李文旭,马昆林,龙广成,谢友均,马聪,李宁. 自密实混凝土拌合物稳定性动态监测及数值模拟研究进展[J]. 材料导报, 2019, 33(13): 2206-2213.
[15] 刘泓吟, 杨宏宇, 陈明凤. 异氰酸酯指数对聚氨酯硬泡阻燃、热稳定性及燃烧性能的影响[J]. 材料导报, 2019, 33(12): 2071-2075.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed