Please wait a minute...
材料导报  2019, Vol. 33 Issue (z1): 102-107    
  无机非金属及其复合材料 |
二氧化碳电化学还原技术研究进展
钱鑫1,2, 邓丽芳1, 王鲁丰1,2, 单锐1, 袁浩然1,2
1 中国科学院广州能源研究所,中国科学院可再生能源重点实验室,广州 510640
2 中国科学技术大学纳米科学与技术学院,苏州 215123
Recent Progress in the Electrochemical Reduction Technology of Carbon Dioxide
QIAN Xin1,2, DENG Lifang1, WANG Lufeng1,2, SHAN Rui1, YUAN Haoran1,2
1 CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640
2Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123
下载:  全 文 ( PDF ) ( 3558KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 二氧化碳(CO2)随着不可再生的煤炭、石油、天然气等传统化石燃料的急剧消耗而大量排放于大气中,是造成全球变暖、环境污染等问题的主要温室气体,也是储量丰富、可再生且廉价易得的碳资源。将CO2看作取之不尽、用之不竭的碳源,并将其转化成具有高附加值的化工产品,可实现变废为宝。目前,CO2的资源化利用技术包括热化学还原、光化学还原、光电催化还原、电化学还原等方法。其中电化学还原技术由于反应条件温和、使用清洁能源、催化效率高、可合成多种含碳化合物和能够通过控制电解条件调控目标产物等优势而受到研究者的广泛关注,其问题在于产物选择性低、催化剂活性低且制备困难、价格昂贵。本文重点介绍CO2电化学还原技术反应机理,讨论电极、电解质、催化剂等因素对CO2电化学还原的影响,概述用于CO2电化学还原的催化剂的研究进展,并对今后的发展趋势进行展望。
自从高熵合金的概念提出以后,广大的科研工作者投身到高熵合金的研究工作之中,先后研究了传统高熵合金、难熔高熵合金和复合高熵合金等的组织结构、性能特点和制备工艺,为高熵合金的设计提供了大量的数据支持。此外,“混乱理论”、高熵合金设计参数、第一性原理等理论的提出进一步丰富了高熵合金的理论基础。
本文介绍了高熵合金的基本理论和特点,重点论述了高熵合金的设计理论和方法。总结了高熵合金在热力学和动力学上的形成条件,并根据研究现状对高熵合金进行分类,分析了组分元素的种类和配比对高熵合金组织结构以及性能特点的影响,综述了高熵合金计算机模拟方法的基本理论和计算模型,总结了其在性能预测上的应用。最后展望了高熵合金设计的研究方向和发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
钱鑫
邓丽芳
王鲁丰
单锐
袁浩然
关键词:  二氧化碳  电化学还原  催化剂  反应机理    
Abstract: Carbon dioxide is a major greenhouse gas which is released into the atmosphere along with the rapid consumption of coal, oil, natural gas and other traditional fossil fuels, causing global warming, environmental pollution and other problems. As an inexhaustible resource, carbon dio-xide could be turned into high value-added chemical products. Nowadays, thermochemical reduction, photochemical reduction, photoelectrocatalytic reduction and electrochemical reduction are widely used for the resource utilization of carbon dioxide. Among them, electrochemical reduction considered to be a green and promising CO2 disposal method has attracted great attention because of its mild reaction conditions, using of clean energy, a high catalytic efficiency, capable of synthesizing variety of carbon-containing compounds, and able to regulate the target products by controlling the electrolytic conditions. However, high energy consumption, low product selectivity, low catalyst activity and the high price of catalyst limited its extensive application. This study first introduces the general principles of carbon dioxide electrochemical reduction. Next, the influe-nce factors of electrochemical reduction such as electrodes, electrolytes and catalysts has been discussed, and the latest progress relating to electrocatalytic catalysts has been reviewed also. Finally, the challenges and prospects for further development of carbon dioxide electrochemical have been presented.
Key words:  carbon dioxide    electrochemical reduction    electrocatalyst    reaction mechanism
               出版日期:  2019-05-25      发布日期:  2019-07-05
ZTFLH:  X511  
基金资助: 国家自然科学基金(51606200);广东省自然科学基金(2017A030310014);东莞市引进创新创业领军人才
作者简介:  钱鑫,2017年6月毕业于安徽师范大学,获得理学学士学位。现为中国科学技术大学纳米科学与技术学院与中国科学院广州能源研究所联合培养的硕士研究生,在袁浩然研究员、邓丽芳副研究员和魏开举副教授的指导下进行研究。目前主要研究领域为固体废弃功能化转化和二氧化碳电化学还原。袁浩然,中国科学院广州能源研究所研究员,博士研究生导师。yuanhaoran81@gmail.com
引用本文:    
钱鑫, 邓丽芳, 王鲁丰, 单锐, 袁浩然. 二氧化碳电化学还原技术研究进展[J]. 材料导报, 2019, 33(z1): 102-107.
QIAN Xin, DENG Lifang, WANG Lufeng, SHAN Rui, YUAN Haoran. Recent Progress in the Electrochemical Reduction Technology of Carbon Dioxide. Materials Reports, 2019, 33(z1): 102-107.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/Iz1/102
1 Wu J J, Sharifi T, Gao Y, et al. Advanced Materials,2018,24(1),1804257.
2 Buchwitz M, Reuter M, Schneising O, et al. Atmospheric Chemistry and Physics,2018,18(23),17355.
3 Berg P, Boland A. Natural Resources Research,2014,23(1),141.
4 Hunt A J, Sine H K, Marriott R, et al. ChemSusChem,2010,3(3),306.
5 Benson S M, Orr F M. MRS Bulletin,2008,33(4),303.
6 Von der Assen N, Jung J, Bardow A. Energy & Environmental Science,2013,6(9),2721.
7 Rahman F A, Aziz M M A, Saidur R, et al. Renewable and Sustainable Energy Reviews,2017,71,112.
8 Quadrelli E A, Centi G, Duplan J L, et al. ChemSusChem,2011,4(9),1194.
9 Costentin C, Robert M, Savéant J M. Chemical Society Reviews,2013,42(6),2423.
10 Markewitz P, Kuckshinrichs W, Leitner W, et al. Energy & Environmental Science,2012,5(6),7281.
11 魏伟, 孙予罕, 闻霞, 等.化工进展,2011,30(1),216.
12 Lim R J, Xie M, Sk M A, et al. Catal Today,2014,233,169.
13 Viswanathan B. Indian Journal of Chemistry, Sect A,2012,51,166.
14 张现萍, 黄海燕, 靳红利, 等.化工进展,2015,34(12),4139.
15 Azuma M, Hashimoto K, Hiramoto M, et al. Journal of Electroanalytical Chemistry,1989,260(2),441.
16 Azuma M, Hashimoto K, Hiramoto M, et al. Journal of the Electrochemical Society,1990,137(6),1772.
17 Kuhl K P, Cave E R, Abram D N, et al. Energy & Environmental Scie-nce,2012,5(5),7050.
18 Machunda R L, Ju H, Lee J. Current Applied Physics,2011,11(4),986.
19 陈国钱, 叶丁丁, 李俊, 等. 化工学报,2017,68(S1),225.
20 Wang Q, Dong H, Yu H. RSC Advances,2014, 4,59970.
21 Manthiram K, Beberwyck B J, Alivisatos A P. Journal of the American Chemical Society,2014,136,13319.
22 Lei F, Liu W, Sun Y, et al. Nature Communications,2016,7,12697.
23 Saravanakumar D, Song J, Jung N, et al. ChemSusChem,2012,5,634.
24 Shahid R, Dalaver H, Anjum Abdesslem J, et al. Angewandte Chemie International Edition,2015,127,2174.
25 Koo Y, Malik R, Alvarez N, et al.RSC Advances,2014,4(31),16362.
26 Kim D, Lee S, Ocon J D, et al. Physical Chemistry Chemical Physics,2015,17(2),824.
27 Tang D Y, Yin H Y, Mao X H, et al. Electrochemica Acta,2013,114,567.
28 Blanchard L A, Hancu D, Beckman E J, et al. Nature,1999,399,28.
29 景维云, 毛庆, 石越, 等. 化工进展,2017,36(6),2150.
30 Carlesi C, Carvajal D, Vasquez D, et al. Chemical Engineering & Process,2014,85(11),48.
31 Zhou F, Liu S M, Yang B Q, et al. Electrochemistry Communications,2015,55(6),43.
32 赵晨辰, 何向明, 王莉, 等.化工进展,2013,32(2),373.
33 Ikeda S, Matsuda N, Nakagawa G, et al. State Ionics,1981,3,197.
34 Liu M, Pang Y, Zhang B,et al. Nature,2016,537,382.
35 Kim C, Jeon H S, Eom T, et al. Journal of the American Chemical Society,2015,137,13844.
36 Gao D, Zhou H, Wang J, et al. Journal of the American Chemical Society,2015,137(13),4288.
37 白晓芳, 陈为, 王白银,等.物理化学学报,2017,33(12),2388.
38 Thoi V S, Chang C J. Chemical Communications,2011,47,6578.
39 Kauffman D R, Ohodnicki P R, Kail B W, et al. The Journal of Physical Chemistry Letters,2011,2,2038.
40 Zhang S, Kang P, Meyer T J. Journal of the American Chemical Society,2014,136(5),1734.
41 玄翠娟, 王杰, 朱静, 等. 物理化学学报,2017,33(1),149.
42 Yaghi O M, Li G, Li H. Nature,1995,378(6558),703.
43 Hei Z H, Song G L, Zhao C Y, et al. In: The 32nd Meeting of the 30th Annual Meeting of the Chinese Chemical Society: Porous Functional Materials. Dalian,2016.
44 杨佳. 基于导电高分子组装体的碳基电催化剂设计、合成及性能研究. 博士学位论文, 中国科学技术大学,2018.
45 蒋海明, 季祥, 司万童, 等. 土木建筑与环境工程,2015,37(3),127.
46 蒋永, 苏敏, 张尧, 等. 应用与环境生物学报,2013,19(5),833.
47 张尧, 张闻杰, 蒋永, 等.应用与环境生物学报,2014,20(2),174.
48 Bajracharya S, Heijne A, Dominguez Benetton X,et al. Bioresource Technology,2015,195,14.
49 Cheng S A, Xing D F, Call D F, et al. Environmental Science & Techno-logy,2009,43(10),3953.
50 Chen Z P, Liu L C, et al. In:The 11th National Academic Conference on Environmental Catalysis and Environmental Materials. Liaoning,2018.
51 刘昌俊, 郭秋婷, 叶静云, 等.化工学报,2016,67(1),6.
52 李路路, 刘帅, 章琴, 等.物理化学学报,2017,33(10),1960.
53 陈东洋, 刘程, 王锦艳, 等.高分子学报,2018(5),559.
54 Ockwig N W, Delgado-friedrichso, O’keeffe M, et al. Accounts of Che-mical Research,2005,38(3),176.
55 El-kaderi H M, Hunt J R, Mendoza-cortes J L, et al. Science,2007,316(5822),268.
56 Lin S, Diercks C S, Zhang Y B, et al. Science,2015,349,1208.
57 Song Y, Chen W, Zhao C, et al. Angewandte Chemie International Edition,2017,129,10980.
58 Wu J J, Yadav R M, Liu M J, et al. ACS Nano,2015,9(5),5364.
59 Wu J J, Liu M J, Sharma P P, et al. Nano Letters,2016,16,466.
60 Wu J J, Ma S C, Sun J, et al. Nature Communication,2016,13869(7),1.
61 Kumar B, Asadi M, Pisasale D, et al. Nature Communications,2013,4(1),2819.
62 Zhao L, He R, Rim K T, et al. Science,2011,333(6045),999.
63 Mane G P, Talapaneni S N, Anand C, et al. Advanced Functional Materials,2012,22(17),3596.
64 Cui X Y, Yang S B, Zhang Z J, et al. Advanced Functional Materials,2016,26(31),5708.
65 Liu Y, Chen S, Quan X, et al. Journal of the American Chemical Society,2015,1379(36),11631.
66 邓丽芳, 董格, 蔡茜茜, 等.燃料化学学报,2018,46(1),120.
67 Yuan H R, Deng L F, Cai X X, et al. RSC Advances,2015,5(69),56121.
[1] 胡厅, 万红, 华叶, 龚瑾瑜, 陈兴宇. 石墨表面TiC梯度涂层的制备及结构调制[J]. 材料导报, 2019, 33(z1): 74-77.
[2] 冉涛, 张骞, 黎邦鑫, 刘旸, 李筠连. g-C3N4/泡沫镍整体式光催化剂的构建及光氧化去除NO[J]. 材料导报, 2019, 33(z1): 337-342.
[3] 李鑫, 王欢, 刘立业, 张吉波, 邱俊. 不同方法制备的乙醇胺还原胺化催化剂及其表征[J]. 材料导报, 2019, 33(z1): 466-469.
[4] 熊德华, 邓砚文, 杜子娟, 张晴晴, 李宏. CuMnO2/TiO2复合光催化剂增效催化降解亚甲基蓝[J]. 材料导报, 2019, 33(8): 1262-1267.
[5] 郑晓平, 王璠, 吴志昂, 龚莉雯, 包锦标, 王市伟. 聚甲基丙烯酸甲酯纳米发泡材料的制备:胶束尺寸对发泡行为的影响[J]. 材料导报, 2019, 33(4): 709-713.
[6] 孙增智, 薛程, 宋莉芳, 邱树君, 褚海亮, 夏永鹏, 孙立贤. 金属有机骨架化合物的二氧化碳吸附性能的研究进展[J]. 材料导报, 2019, 33(3): 541-549.
[7] 刘新华, 储兆洋, 李永, 郑宏亮, 方寅春. 含聚甲基丙烯酸二甲氨基乙酯刷的羽毛接枝共聚物的制备及性能[J]. 材料导报, 2019, 33(2): 342-346.
[8] 皮茂, 张守村, 魏杰, 李伟达. 采用高内相乳液模板法制备葡萄糖基/麦芽糖基大孔材料及其形貌表征[J]. 材料导报, 2019, 33(16): 2804-2807.
[9] 闫静,田晓,赵宣,赵丽娟,杨艳春,陈均. 储氢合金作为直接硼氢化物燃料电池阳极催化剂的研究进展[J]. 材料导报, 2019, 33(13): 2229-2236.
[10] 施露,张杰,陈蓉,沈美庆,单斌. 锰基多元氧化物的NO催化氧化研究进展[J]. 材料导报, 2019, 33(13): 2167-2173.
[11] 张宇, 王敏, 周鑫, 杨光俊, 柴天煜, 朱彤. Bi2MoO6/BiVO4异质结光催化剂的制备及性能[J]. 材料导报, 2019, 33(10): 1597-1601.
[12] 郝佳瑜, 刘易斯, 李文章, 李洁. 形貌可控的铂类贵金属氧还原电催化剂研究进展[J]. 材料导报, 2019, 33(1): 127-134.
[13] 孙培川, 魏清茂, 张宇振, 杨喜昆, 王剑华. 核壳型铂基燃料电池催化剂制备方法与微结构控制综述[J]. 《材料导报》期刊社, 2018, 32(9): 1427-1434.
[14] 李旭力, 王晓静, 赵君, 李玉佩, 李发堂, 陈学敏. 催化分解水制氢体系助催化剂研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1057-1064.
[15] 姜啟亮, 陈琦, 姜付本, 陈宬, VERPOORT Francis. 降冰片烯及其衍生物开环易位聚合的研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1165-1173.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed