Please wait a minute...
材料导报  2019, Vol. 33 Issue (Z2): 24-27    
  无机非金属及其复合材料 |
ZnS溅射功率对Cu2ZnSnS4薄膜附着性及太阳电池性能的影响
王璐1, 郭杰1, 郝瑞亭2, 顾康2, 刘斌1, 王远方舟1, 孙帅辉1
1 云南师范大学,云南省光电信息技术重点实验室,昆明 650500;
2 云南师范大学能源与环境科学学院,可再生能源材料先进技术与制备教育部重点实验室,昆明 650500
Influence of ZnS Sputtering Power on Cu2ZnSnS4 Thin Film Adhesion andPerformance of Solar Cells
WANG Lu1, GUO Jie1, HAO Ruiting2, Gu Kang2, LIU Bin1, WANG Yuanfangzhou1, SUN Shuaihui1
1 Yunnan Key Laboratory of Optoelectronic Information Technology, Yunnan Normal University, Kunming 650500;
2 Key Laboratory of Renewable Energy Advanced Materials and Manufacturing Technology Ministry of Education, School of Energy and Environment Sciences, Yunnan Normal University, Kunming 650500
下载:  全 文 ( PDF ) ( 2618KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用不同ZnS溅射功率,在钠钙玻璃(SLG)衬底上依次溅射Mo、ZnS、SnS及Cu,退火后制备出Cu2ZnSnS4(CZTS)薄膜。研究了溅射功率(50~140W)对ZnS薄膜和CZTS薄膜的微观形貌、微结构以及附着性的影响。结果表明,不同功率溅射的ZnS薄膜为(008)择优取向的纤锌矿六方晶系结构;功率较低时,ZnS薄膜结晶质量较差;随着功率从50 W增加到140 W,ZnS薄膜内的压应力增加了一个数量级;ZnS溅射功率低于80 W或高于110 W时,退火后的CZTS薄膜发生龟裂甚至脱落;ZnS溅射功率在80~110 W时,退火后CZTS薄膜表面均匀平整;110 W溅射后的CZTS薄膜出现较多的孔洞和二次相。采用80 W功率溅射ZnS薄膜制备的CZTS/CdS太阳电池,开路电压达到572 mV,短路电流密度为14.23 mA/cm2,光电转换效率为3.34%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王璐
郭杰
郝瑞亭
顾康
刘斌
王远方舟
孙帅辉
关键词:  铜锌锡硫  硫化锌  应力  附着性    
Abstract: The stacking precursors SLG/Mo/ZnS/SnS/Cu were sputtered ZnS, SnS and Cu target in sequence on soda-lime glass (SLG) substrates in which the sputtering power of ZnS changed from 50 W to 140 W. Then Cu2ZnSnS4 (CZTS) thin films were obtained by annealing. The effects of ZnS sputtering powers on the morphology, microstructure and adhesion in ZnS thin films and followed CZTS thin films were investigated. The results showed that the ZnS thin films with different power sputtering were hexagonal wurtzite with (008) preferred orientation. The poor crystallization in ZnS thin film was found at low sputtering power. The compressive stress in ZnS thin film increased by an order of magnitude with sputtering power from 50 W to 140 W. When sputtering power of ZnS was lower than 80 W or higher than 110 W, the crack and even falling off phenomenon were observed in the annealed CZTS thin films. From 80 W to 110 W, the surface of CZTS thin film was even but more holes and se-condary phases appeared at higher power of 110 W. The CZTS solar cell was prepared with ZnS thin films sputtered at 80 W, which showed open circuit voltage of 572 mV, short circuit current density of 14.23 mA/cm2 and photoelectric conversion efficiency of 3.34%.
Key words:  Cu2ZnSnS4    ZnS    stress    adhesive property
               出版日期:  2019-11-25      发布日期:  2019-11-25
ZTFLH:  TM914.4  
基金资助: 国家自然科学基金(61774130;11474248;61176127;61006085);云南省应用基础研究计划(2017FD069)
通讯作者:  jieggg1020@sina.com; ruitinghao@semi.ac.cn   
作者简介:  王璐,云南师范大学,硕士研究生,主要从事铜锌锡硫薄膜太阳电池的研究。
郭杰,云南师范大学,副教授,博士毕业于西北工业大学,主要从事红外探测技术的研究。
郝瑞亭,云南师范大学,教授,博士毕业于中科院半导体研究所,主要从事红外探测技术的研究。
引用本文:    
王璐, 郭杰, 郝瑞亭, 顾康, 刘斌, 王远方舟, 孙帅辉. ZnS溅射功率对Cu2ZnSnS4薄膜附着性及太阳电池性能的影响[J]. 材料导报, 2019, 33(Z2): 24-27.
WANG Lu, GUO Jie, HAO Ruiting, Gu Kang, LIU Bin, WANG Yuanfangzhou, SUN Shuaihui. Influence of ZnS Sputtering Power on Cu2ZnSnS4 Thin Film Adhesion andPerformance of Solar Cells. Materials Reports, 2019, 33(Z2): 24-27.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/IZ2/24
1 Walsh A, Chen S, Wei S H, et al. Advanced Energy Materials,2012,2(4),400.
2 Mitzi D B, Gunawan O, Todorov T K, et al. Solar Energy Materials and Solar Cells,2011,95(6),1421.
3 Polizzotti A, Repins I L, Noufi R, et al. Energy and Environmental Science,2013,6(11),3171.
4 Todorov T K, Tang J, Bag S, et al. Advanced Energy Materials,2013,3(1),34.
5 Wang W, Winkler M T, Gunawan O, et al. Advanced Energy Materials,2014,4(7),1029.
6 Shockley W, Queisser H J. Journal of Applied Physics,1961,32,510.
7 Henry C H. Journal of Applied Physics,1980,51,4494.
8 Araki H, Mikaduki A, Kubo Y, et al. Thin Solid Films,2008,517(4),1457.
9 Katagiri H, Jimbo K, Tahara M, et al. Materials Research Society Symposium Proceedings,2009,113(1),165.
10 Katagiri H, Saitoh K, Washio T, et al. Solar Energy Materials and Solar Cells,2001,65(1-4),141.
11 Son D H, Kim D H, Park S N, et al. Chemistry of Materials,2015,27(15),5180.
12 Li J, Zhang Y, Wang H, et al. Solar Energy Materials and Solar Cells,2015,132,363.
13 Shin S W, Pawar S M, Park C Y, et al. Solar Energy Materials and Solar Cells,2011,95(12),3202.
14 邵淑英,范正修,邵建达.光学学报,2004,24(5),437.
15 李建军.溅射后硒化法制备CZTSSe薄膜及电池的研究.博士学位论文,南开大学,2016.
16 Le Donne A, Cavalcoli D, Mereu R A, et al. Materials Science in Semiconductor Processing,2017,71(11),7.
17 Laukaitis G, Lindroos S, Tamulevicius S, et al. Applied Surface Science,2000,161(7),396.
18 Rodrigues S A S, Rolo A G, Khodorov A, et al. Journal of the European Ceramic Society,2010,30(2),521.
19 顾培夫,郑臻荣,赵永江,等.物理学报,2006,55(12),6459.
20 Segmüller A, Murakami M. Analytical Techniques for Thin Films, Boston,1988.
21 Mollwo E. Landoldt-Börnstein. Zahlenwerte und Funktionen aus Naturwiss. u. Technik. Neue Serie, Springer, Berlin,1982.
22 谢婧,黎兵,李愿杰,等.物理学报,2010,59(8),5749.
23 宋学萍,杨筱静,孙兆奇,等.功能材料,2006,11(37),1734.
24 Hong C W, Shin S W, Gurav K V, et al. Applied Surface Science,2015,334,180.
25 Fairbrother A, Fontané X, Izquierdo-Roca V, et al. Solar Energy Mate-rials and Solar Cells,2013,112(10),97.
26 Schurr R, Hölzing A, Jost S, et al. Thin Solid Films,2009,517(7),2465.
27 Liu F Y, Sun K, Li W, et al. Applied Physics Letters,2014,104(2),051105.
28 Tao J, Zhang K, Zhang C, et al. Chemical Communications (Camb),2015,51(5),10337.
29 Hyesun Y, Kim J. Thin Solid Films,2010,518(9),6567.
30 Pawar S M, Moholkar A V, Kim I K, et al. Current Applied Physics,2010,10(3),565.
[1] 梁宁慧, 曹郭俊, 刘新荣, 代继飞, 缪庆旭. 基于三点弯曲试验的聚丙烯纤维桥接应力研究[J]. 材料导报, 2020, 34(2): 2153-2158.
[2] 邓亚, 张宇民, 周玉锋, 王伟. 碳化硅单晶材料残余应力检测技术研究进展[J]. 材料导报, 2019, 33(Z2): 206-209.
[3] 韩艳, 王龙龙, 刘志浩. CFRP板加固含I型裂纹混凝土的断裂扩展规律[J]. 材料导报, 2019, 33(Z2): 304-308.
[4] 王子云, 赵鹏越, 郭永博, 张凯, 王康. 梯度纳米多晶铜纳米切削过程的分子动力学仿真[J]. 材料导报, 2019, 33(Z2): 419-423.
[5] 张李锋, 段江. 750 kV变电站地刀连杆杆端轴承断裂失效分析[J]. 材料导报, 2019, 33(Z2): 452-454.
[6] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
[7] 崔海坡, 张伟东, 宋成利, 王成勇, 张涛, 张春晓, 程千莉. 微创血管夹不同齿型对血管力学性能的影响[J]. 材料导报, 2019, 33(z1): 432-435.
[8] 刘新灵, 陶春虎, 王天宇. 夹杂物形状对夹杂/基体界面应力应变分布的影响[J]. 材料导报, 2019, 33(z1): 436-439.
[9] 汪可华, 陈坚, 王福德, 梁晓康, 孙正明. 材料应力-应变的球形纳米压入法研究进展[J]. 材料导报, 2019, 33(9): 1490-1499.
[10] 刘朝, 邱舒怿, 黄红梅, 郭萍, 霍二光. 吸热型碳氢燃料正辛烷的热分解机理[J]. 材料导报, 2019, 33(8): 1251-1256.
[11] 王卫彪, 莫立武, 邓敏. CaSO4·2H2O-C3A压实体水化产生膨胀应力的机理[J]. 材料导报, 2019, 33(8): 1307-1311.
[12] 侯艳, 程从前, 赵杰, 冯雪, 李然, 闵小华. 拉应力对2205双相不锈钢临界点蚀温度和点蚀行为的影响[J]. 材料导报, 2019, 33(6): 1022-1026.
[13] 孙淑红, 朱艳, 青红梅, 胡永茂, 杨斌. 亚稳相纤锌矿铜锌锡硫(WZ-CZTS)纳米晶的合成及光伏应用的研究现状与进展[J]. 材料导报, 2019, 33(5): 761-769.
[14] 宋雨来, 付洪德, 王震, 杨鹏聪. 镁合金的应力腐蚀开裂:机理、影响因素、防护技术[J]. 材料导报, 2019, 33(5): 834-840.
[15] 田响宇, 尚心莲, 李红霞, 王新福, 刘国齐, 杨文刚, 于建宾. 在内衬材料中添加氢氧化铝提升长水口的抗热震性:内衬材料显微组织与性能及长水口颈部最大热应力数学模型[J]. 材料导报, 2019, 33(4): 611-616.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] WU Tao, MAO Lili, WANG Haizeng. Preparation and Defluoridation Performance of Mg/Fe-LDHO/PES Membranous Adsorbent[J]. Materials Reports, 2017, 31(14): 26 -30 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed