Please wait a minute...
材料导报  2019, Vol. 33 Issue (7): 1133-1140    https://doi.org/10.11896/cldb.18010017
  无机非金属及其复合材料 |
改性活性炭吸附甲苯废气的研究进展
李芮1, 施宇震1, 宁平1, 谷俊杰1, 关清卿1, 耿瑞文2, 孟凡凡3
1 昆明理工大学环境科学与工程学院,昆明 650500
2 昆明理工大学机电工程学院,昆明 650500
3 云南北控水务有限公司,昆明 650500
Toluene Removal from Waste Gas by modified Activated Carbon: a Review
LI Rui1, SHI Yuzhen1, NING Ping1, GU Junjie1, GUAN Qingqing1, GENG Ruiwen2, mENG Fanfan3
1 Faculty of Environmental Science and Engineering,Kunming University of Science and Technology,Kunming 650500
2 Faculty of mechanical and Electrical Engineering,Kunming University of Science and Technology,Kunming 650500
3 Yunnan Beikong Enterprises Water Group Limited,Kunming 650500
下载:  全 文 ( PDF ) ( 6155KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 甲苯是一种有毒的挥发性有机物,会对环境造成严重危害。活性炭吸附法是处理甲苯的经典工艺,但普通活性炭通常存在灰分高、吸附选择性差、孔径分布不均匀及表面官能团限制等问题。为了更高效、更有针对性地吸附目标物质,需要对活性炭进行改性处理。研究人员从选择合适的改性物质、处理工艺、操作条件及改性物剂量等方面不断尝试来确定最佳改性方法。
目前活性炭的改性方法主要有酸碱改性法、负载杂原子和化合物改性法、低温等离子体改性法、微波改性法等。酸碱改性法通过去除活性炭中酸碱可溶性物质来降低灰分含量,从而扩大其比表面积和孔道容积。相较酸改性,碱改性可提高活性炭表面碱性官能团数量,增强其表面π-π色散力,使活性炭整体的非极性提升,有利于其吸附弱极性的甲苯。负载杂原子和化合物改性法是利用负载的杂原子和化合物与甲苯之间的络合作用来提高活性炭的吸附性能,但引入的杂原子和化合物含量过高时易堵塞孔道,降低活性炭对甲苯的吸附容量。低温等离子改性法具有能耗低、使用范围广和效率高等优点,是一项去除污染物的环保新技术,不仅可改变活性炭表面的化学性质,也会对其界面物性产生影响,在活性炭表面处理方面显示出广阔的应用前景。微波改性法利用微波能量在活性炭表面产生更多的活性位点,配合通入的还原性气体还能分解活性炭表面的酸性官能团,增强其碱性。微波加热可以去除活性炭孔道内部的杂质,但随着温度的升高,会造成炭骨架收缩,不利于吸附的进行。其中微波辐照功率、改性物的浓度及辐照时间是微波改性法中需要控制的关键因素。
本文综述了活性炭及各种改性活性炭吸附甲苯的研究进展,通过吸附等温模型对比分析了不同改性活性炭对甲苯的吸附性能及吸附机理。研究表明,活性炭的比表面积、孔道结构及表面化学性质等是影响吸附性能的主要原因。本文还探讨了不同改性方法对活性炭理化性质的影响,对于提高活性炭的吸附效率具有重要意义,也为研制高效吸附甲苯的改性活性炭奠定了理论基础。最后,提出了活性炭研究中亟待解决的问题与其今后的发展方向,为后续研究和工业生产应用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李芮
施宇震
宁平
谷俊杰
关清卿
耿瑞文
孟凡凡
关键词:  活性炭  改性  甲苯  吸附    
Abstract: As a toxic volatile organic compound, toluene can cause serious harm to the environment.Activated carbon adsorption is a classic process for toluene removal, nevertheless, common ordinary activated carbon usually suffered from high ash content, poor adsorption selectivity, uneven pore size distribution and limited surface functional groups.For the sake of acquiring higher efficiency and selectivity in adsorption of target substances, modification of activated carbon should be conducted inevitably.Numerous attempts have been made by researchers to figure out the optimal modification method, which concern the selection of the appropriate modification substance, processing technology, operating conditions and the dosage of modifier.
At present, the primary modification methods of activated carbon mainly include acid and alkali modification, loading ofheteroatoms and compounds, low temperature plasma modification, and microwave modification etc.In terms of acid and alkali modification, it can reduce the ash content by removing the acid and alkali soluble substances in activated carbon, thus enlarging the specific area and pore volume of activated carbon.Different from acid modification, alkali modification can increase the number of basic functional groups on the surface of activated carbon, enhance the surface π-π dispersion force to further improve the overall non-polarity, which is beneficial to the adsorption of weakly polar toluene.Considering the loading of heteroatoms and compounds, it utilizes the complexation between heteroatoms/compounds and toluene to significantly improve the adsorption ability of activated carbon.However, excessive loading of heteroatoms and compounds will be likely to block the pore channels and reduce the adsorption capacity of activated carbon for toluene.The low temperature plasma modification features low energy consumption, higher efficiency and wide application range, which is regarded as a novel environment-friendly technique for toluene removal.It can not only improve the surface chemistry properties, but also affect the interfacial physical properties.Therefore, low temperature plasma modification exhibits a promising prospect in the field of toluene removal.Regarding to microwave modification, more active sites can be generated on the surface of activated carbon thanks to the microwave energy.With the introduction of reducing gas, the acidic functional groups on the surface of activated carbon could also be decomposed and the alkalinity can be enhanced as well.microwave heating can remove impurities in the pores of activated carbon, whereas, with the increase of temperature, the carbon skeleton will shrink, which is not conducive to the adsorption.In particular, the power of microwave irradiation, the concentration of the modifier and the irradiation duration are the key factors to be controlled in microwave modification.
In this article, the research progress of adsorption of toluene by activated carbon and modified activated carbon is reviewed.The adsorption performances and mechanisms of various modified activated carbon for toluene are investigated by comparing and analyzing their isothermal adsorption models.It is demonstrated that the specific surface area, channel structure and surface chemistry properties are the main factors that affect the adsorption performances.The influence of various modification methods on the physical and chemical properties of activated carbon are discussed, which is of great significance to improve the adsorption efficiency and lay a theoretical foundation for developing more efficient modified activated carbon in toluene removal.Finally, the problems remain to be solved and future trend for activated carbon modification are put forward, which provided a valuable information for further study and industrial application.
Key words:  activated carbon    modification    toluene    adsorption
               出版日期:  2019-04-10      发布日期:  2019-04-10
ZTFLH:  X511  
基金资助: 国家自然科学基金(21767015);国家重点研发计划资助项目(2017YFC0210504);昆明理工大学分析测试基金(2018m20162207029)
通讯作者:  yzs870307@gmail.com   
作者简介:  李芮,2016年6月毕业于河海大学文天学院,获得工学学士学位。现为昆明理工大学环境科学与工程学院硕士研究生,在关清卿教授、施宇震讲师的指导下进行研究。目前主要研究领域为大气污染物的吸附分离。施宇震,昆明理工大学环境科学与工程学院讲师,硕士研究生导师。2009年7月本科毕业于福州大学化学化工学院,2010年9月于英国谢菲尔德化学与过程工程系获得硕士学位,2015年10月于英国谢菲尔德大学生物与化学工程系获得博士学位。2016年1月回国后,于昆明理工大学参加工作,主要从事大气、水体污染物的治理以及化工过程仿真与模拟等方面的研究。
引用本文:    
李芮, 施宇震, 宁平, 谷俊杰, 关清卿, 耿瑞文, 孟凡凡. 改性活性炭吸附甲苯废气的研究进展[J]. 材料导报, 2019, 33(7): 1133-1140.
LI Rui, SHI Yuzhen, NING Ping, GU Junjie, GUAN Qingqing, GENG Ruiwen, mENG Fanfan. Toluene Removal from Waste Gas by modified Activated Carbon: a Review. Materials Reports, 2019, 33(7): 1133-1140.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18010017  或          http://www.mater-rep.com/CN/Y2019/V33/I7/1133
1 Balanay J A, Floyd E L, Lungu C T.Annals of Occupational Hygiene,2015, 59(4), 481.
2 Stenzel m H.Chemical Engineering Progress,1993, 89(4), 36.
3 Xu W, Liu J L, Sun K.Chemical Industry and Engineering Progress, 2016, 35(4),1223 (in Chinese).
许伟,刘军利,孙康.化工进展,2016, 35(4),1223.
4 Dwivedi P, Gaur V, Sharma A, et al.Separation & Purification Technology, 2004, 39(1), 23.
5 Chen K, Zhu L, Yang K.Journal of Environmental Sciences, 2015, 32, 189.
6 Campesi m A, Luzi C D, Barreto G F, et al.Journal of Environmental management, 2015, 154, 216.
7 Vaughan Jr R L, Reed B E.Water Research,2005, 39(6), 1005.
8 Lin S,Xu m, Zhang W, et al.Journal of Hazardous materials,2017, 335, 47.
9 Kim C, Lee H, Juelfs A, et al.Carbon, 2017, 121, 63.
10 Economy J, Daley m, Hippo E J, et al.Carbon, 1995, 33(3), 344.
11 Yang X, Yi H, Tang X, et al.Journal of Environmental Sciences.2018, 67,104.
12 Smeets P J, Woertink J S, Sels B F, et al.Inorganic Chemistry,2010, 49(8), 3573.
13 Zanin E, Scapinello J, Oliveira m D, et al.Process Safety & Environmental Protection,2017, 105, 194.
14 mèçabih Z.Journal of Encapsulation & Adsorption Sciences,2017, 7(1), 40.
15 Kumar P, Pournara A, Kim K H, et al.Progress in materials Science,2017, 86, 25.
16 Sooksawat N, meetam m, Kruatrachue m, et al.Environmental Letters,2017, 52(6), 539.
17 Wang H, Zhu T, Fan X, et al.Carbon, 2014, 67(1), 712.
18 Shahtalebi A, Farmahini A H, Shukla P, et al.Carbon, 2014, 77, 560.
19 Joung H J, Kim J H, Oh J S, et al.Applied Surface Science,2014, 290(4), 267.
20 Ramos m E,Bonelli P R, Cukierman A L, et al.Journal of Hazardous materials, 2010, 177(1), 175.
21 Hu m m, Emamipour H, Johnsen D L, et al.Environmental Science & Technology,2017, 51(13),7581.
22 Chen J P, Wu S.Langmuir the ACS Journal of Surfaces & Colloids,2004, 20(6), 2233.
23 mao H, Huang R, Hashisho Z, et al.Research on Chemical Intermediates,2015, 42(4), 1.
24 Qian Q, Gong C, Zhang Z, et al.Adsorption-journal of the International Adsorption Society, 2015, 21(4), 333.
25 Zhang X, Gao B, Creamer A E, et al.Journal of Hazardous materials,2017, 338, 102.
26 Kim K J,Ahn H G.microporous & mesoporous materials,2012, 152(152), 78.
27 Gupta V K, Nayak A, Agarwal S.Environmental Engineering Research, 2015, 20(1), 1.
28 Liu Y, Li Z,Shen W.Recent Patents on Chemical Engineering,2008, 1(1),27
29 Das D, Gaur V, Verma N.Carbon, 2004, 42(14), 2949.
30 Song L, Wang C Y, Chen H L, et al.Chinese Journal of Environmental Engineering, 2017, 11(1), 457 (in Chinese).
宋磊,王春颖,陈虹霖,等.环境工程学报,2017, 11(1), 457.
31 Song Y, Qiao W m, Yoon S H, et al.New Carbon materials,2005, 20(4), 294.
32 Lahaye J.Fuel, 1998, 77(6), 543.
33 Vega E, Lemus J, Anfruns A, et al.Journal of Hazardous materials, 2013, 258(16), 77.
34 Li L Q, LiangX, Shi R, et al. CIESC Journal, 2013, 64(3), 970 (in Chinese).
李立清,梁鑫,石瑞,等.化工学报, 2013, 64(3), 970.
35 Tu T T, Lee m, Kuo S T, et al.Indoor & Built Environment, 2016, 25(5), 772.
36 Daifullah A A m, Girgis B S.Colloids & Surfaces A Physicochemical & Engineering Aspects,2003, 214(1), 181.
37 Lopes A S D C, Le O De Carvalho S m, Brasil D D S B, et al.American Journal of Analytical Chemistry, 2015, 6(6), 528.
38 Qiu J, Wang G, Bao Y, et al.Fuel Processing Technology, 2015, 129(129), 85.
39 Wjihi S, Erto A, Knani S, et al.Journal of molecular Liquids, 2017, 238,402.
40 Pei B.Study on adsorption improvement of low concentrations toluene on active carbon.master's Thesis, Tongji University, China, 2008 (in Chinese).
裴冰.活性炭吸附净化低浓度甲苯气体工艺改进研究.硕士学位论文, 同济大学, 2008.
41 mohammed J, Nasri N S, Zaini m A A, et al.International Biodeterioration & Biodegradation, 2015, 102, 245.
42 Kim S Y, Yoon Y H, Kim K S.International Journal of Environmental Science & Technology, 2016, 13(9), 2189.
43 Qiu W, Dou K, Zhou Y, et al.Chinese Journal of Chemical Engineering, 2018, 26(1),81.
44 Yang Z, Yi H, Tang X, et al.Chemical Engineering Journal, 2017, 319,191.
45 Tiwari S, Bijwe J.Procedia Technology, 2014, 14, 505.
46 Carvalho m N, motta m D, Benachour m, et al.Journal of Hazardous materials, 2012, 239-240(18), 95.
47 Kim K J, Kang C S, You Y J, et al.Catalysis Today, 2006, 111(3), 223.
48 Kim K J,Ahn H G.Carbon, 2010, 48(8), 2198.
49 Teng H, Yeh T S, Hsu L Y.Carbon,1998, 36(9), 1387.
50 Ke T.Study on modification of activated carbon and its adsorption capacity of VOCs.master's Thesis, Xi'an University of Architecture and Technology, China, 2009 (in Chinese).
柯涛.活性炭的改性及其对VOCs吸附能力的研究.硕士学位论文, 西安建筑科技大学, 2009.
51 Zhang S P.Study on performance of modified activated carbon adsorption of toluene waste gas containing water vapor.master's Thesis, Xi'an University of Architecture and Technology, China, 2013 (in Chinese).
张树鹏.改性活性炭吸附含水气的甲苯废气的性能研究.硕士学位论文, 西安建筑科技大学, 2013.
52 Chen Y L, Wu Q T, Sun F T.Environmental Engineering, 2016, 34(2), 91 (in Chinese).
陈玉莲,吴秋芳,孔凡滔.环境工程,2016, 34(2), 91.
53 Liu H B, Yang B, Xue N D. Environmental Science, 2016, 37(9), 3670 (in Chinese).
刘寒冰,杨兵,薛南冬.环境科学, 2016, 37(9), 3670.
54 Liu Z J, Huang Y F, Liu J H. Natural Gas Chemical Industry, 2014, 39(2), 75 (in Chinese).
刘志军,黄艳芳,刘金红.天然气化工(C1化学与化工),2014, 39(2), 75.
55 Guo W, Zhang H.Journal of Tianjin Polytechnic University, 2013, 32(4), 52 (in Chinese).
郭薇,张华.天津工业大学学报,2013, 32(4), 52.
56 Zhang J X.Adsorption of VOCs on modified activated carbon by supported Cu, mn.master's Thesis, Xi'an University of Architecture and Technology, China, 2014 (in Chinese).
张俊香.负载Cu、mn改性活性炭吸附VOCs的性能研究.硕士学位论文, 西安建筑科技大学, 2014.
57 Yi F Y, Lin X D, Chen S X, et al.Journal of Porous materials, 2009, 16(5), 521.
58 Li C Y, Wu P, Fan X, et al.Chemistry and Industry of Forest Products, 2016, 36(2), 9 (in Chinese).
李长玉,吴鹏,樊星,等.林产化学与工业, 2016, 36(2), 9.
59 Li m, Lu B, Ke Q, et al.Journal of Hazardous materials, 2017, 333, 88.
60 Chen J, Qin Y, Chen Z, et al.Chemical Engineering Journal, 2016, 293, 281.
61 Gregis G, Schaefer S, Sanchez J B, et al.materials Chemistry & Physics, 2017, 192, 374.
62 martínez F, Pariente I, Brebou C, et al.Journal of Chemical Technology & Biotechnology,2014, 89(8), 1182.
63 Zhang Z L, Luo J m, Zhang P Y, et al.China Environmental Science, 2006, 26(b07), 56(in Chinese).
张忠良,罗吉敏,张彭义,等.中国环境科学,2006, 26(s1), 56.
64 Liu H B,Jian X, Wang X, et al. Environmental Science, 2016, 37(4), 1287 (in Chinese).
刘寒冰,姜鑫,王新,等.环境科学,2016, 37(4), 1287.
65 Park E J, Cho Y K, Kim D H, et al.Langmuir the ACS Journal of Surfaces & Colloids, 2014, 30(34), 10256.
66 Wei C K, Li J, Zhu T L, et al.Chinese Journal of Environmental Engineering, 2008, 2(2), 239 (in Chinese).
魏长宽,李靖,朱天乐,等.环境工程学报,2008, 2(2), 239.
67 Qiu J S.New Carbon materials, 2001, 16(3), 58(in Chinese).
邱介山.新型炭材料,2001, 16(3), 58.
68 Luo F.modification of adsorption performance of carbon materials by nonthermal plasma.Ph.D.Thesis, Zhejiang University, China, 2009 (in Chinese).
罗凡.低温等离子体改性碳材料吸附性能的研究.博士学位论文, 浙江大学, 2009.
69 mushtaq F, mat R, Ani F N.Energy Conversion & management, 2016, 110, 142.
70 Ye W, Gao Y, Ding H, et al.Fuel, 2016, 180, 574.
71 mao H, Zhou D,Hashisho Z, et al.Journal of Industrial and Engineering Chemistry, 2015, 21, 516.
72 Liu X, Xie Q, Bo L, et al.Applied Catalysis A General,2004, 264(1), 53.
73 Cao X Q, Huang X m , Liu S R, et al. Environmental Science, 2008, 29(10), 2868 (in Chinese).
曹晓强,黄学敏,刘胜荣,等.环境科学,2008, 29(10), 2868.
74 Cao X Q, Huang X m, Liu S R, et al.Journal of Xi'an University of Architecture & Technology (Natural Science Edition), 2008, 40(2), 249 (in Chinese).
曹晓强,黄学敏,刘胜荣,等.西安建筑科技大学学报(自然科学版), 2008, 40(2), 249.
75 Zhou L X, Peng J H, Qian T C, et al.Chemical Reaction Engineering and Technology, 2011, 27(2),187(in Chinese)
周烈兴,彭金辉,钱天才,等.化学反应工程与工艺, 2011, 27(2), 187.
76 Zhou L X.Performance and mechanism of adsorption of benzene and toluene on activated carbon.master's Thesis, Kunming University of Science and Technology, China, 2011 (in Chinese).
周烈兴.活性炭吸附处理苯和甲苯气体的性能及机理研究.硕士学位论文, 昆明理工大学, 2011.
77 mohammed J, Nasri N S, Zaini m A A, et al.Desalination and Water Treatment, 2016, 57(17),7881.
78 Pak S H, Jeon m J, Jeon Y W.International Biodeterioration & Biodegradation,2016, 113, 195.
79 Tiwari V K, Chen Z, Gao F, et al.Journal of materials Chemistry A,2017, 5(24), 12131.
80 Zhang J X, Huang X m, Cao L, et al.Environmental Engineering, 2015, 33(1), 95 (in Chinese).
张俊香,黄学敏,曹利,等.环境工程, 2015, 33(1), 95.
[1] 范舟, 黄泰愚, 刘建仪. 硫对镍基合金825(100)电子结构影响的密度泛函研究[J]. 材料导报, 2019, 33(z1): 332-336.
[2] 刘珊, 冯婷, 田薪成, 刘丹荣, 张悦, 李宇亮. 海藻酸钠-水合二氧化锰功能球对Cu(Ⅱ)的吸附性能研究[J]. 材料导报, 2019, 33(z1): 136-140.
[3] 关文学, 周键, 王三反, 李艳红. 等离子体技术接枝苯磺酸甜菜碱改性对离子交换膜电阻的影响[J]. 材料导报, 2019, 33(z1): 462-465.
[4] 柴凡超, 常树全, 王国辉, 姚初请, 戴耀东. 辐射改性对铅/铜高分子辐射屏蔽材料性能的影响[J]. 材料导报, 2019, 33(z1): 444-447.
[5] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[6] 秦小凤, 曹嘉真, 汪小莉, 张贤明, 吕晓书. 纳米零价铁优化体系及其在环境中的应用研究进展[J]. 材料导报, 2019, 33(9): 1550-1557.
[7] 姜德彬, 袁云松, 吴俊书, 杜玉成, 王金淑, 张育新. 硅藻土基复合材料在能源与环境领域的应用进展[J]. 材料导报, 2019, 33(9): 1483-1489.
[8] 郑云武, 陶磊, 康佳, 黄元波, 刘灿, 郑志锋. 不同原料烘焙炭的理化特性及对亚甲基蓝的吸附性能[J]. 材料导报, 2019, 33(8): 1276-1284.
[9] 臧文洁, 郭丽萍, 曹园章, 张健, 薛晓丽. 内掺氯离子与硫酸根离子在水泥净浆中的交互作用[J]. 材料导报, 2019, 33(8): 1317-1321.
[10] 谢婉晨, 李建三. 木质素磺酸钠在混凝土模拟孔隙液中对碳钢的缓蚀与吸附作用[J]. 材料导报, 2019, 33(8): 1401-1405.
[11] 王岚, 李冀, 桂婉妹. 表面活性剂对温拌胶粉改性沥青高低温性能的影响[J]. 材料导报, 2019, 33(6): 986-990.
[12] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[13] 张旭昀, 王文泉, 郭斌, 郑冰洁, 吴戆, 王勇. CaCO3在Fe(100)表面成垢机制的第一性原理研究[J]. 材料导报, 2019, 33(6): 965-969.
[14] 杜娟, 刘青茂, 王付胜, 宋肖肖, 胡雪兰. Ti-6Al-4V钛合金在氢氟酸-硝酸体系下的缓蚀行为及机理[J]. 材料导报, 2019, 33(6): 1000-1005.
[15] 谢鹏飞, 陈勰, 丁峰, 张乃文, 李建波, 任杰. 缩聚法制备热固性聚乳酸及其力学性能和热稳定性研究[J]. 材料导报, 2019, 33(6): 1042-1046.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed