Please wait a minute...
材料导报  2019, Vol. 33 Issue (6): 941-946    https://doi.org/10.11896/cldb.201906006
  无机非金属及其复合材料 |
Fe掺杂的Ag-ZnO纳米复合材料的合成及光催化性能
张嘉羲, 袁欢, 刘禹彤, 陈雨, 徐明
西南民族大学电气信息工程学院,信息材料四川省高校重点实验室,成都 610041
Synthesis and Photocatalytic Properties of Fe Doped Ag-ZnO Nanocomposites
ZHANG Jiaxi, YUAN Huan, LIU Yutong, CHEN Yu, XU Ming
Key Laboratory of Information Materials of Sichuan Province, College of Electrical & Information Engineering, Southwest Minzu University, Chengdu 610041
下载:  全 文 ( PDF ) ( 5197KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用高分子网络凝胶工艺制备了Fe掺杂的Ag-ZnO系列纳米粉体。通过XRD、SEM、XPS、PL和UV-vis对所制备样品的微结构和光学性质进行了表征,随后以甲基橙和亚甲基蓝为模拟污染物,分别在模拟紫外光和模拟太阳光下对所制备的样品进行光催化测试。结果表明,Fe掺杂后,ZnO晶粒尺寸有所减小,且纳米Ag颗粒的分散性得到改善。样品中的Fe以Fe2+和Fe3+形式共存,随着Fe掺杂浓度的增加,ZnO晶格中的铁离子由+2价向+3价转变,导致PL光谱中蓝光发射峰强度降低。光催化测试结果表明样品Zn0.96Fe0.01Ag0.03O具有最好的光催化活性,结合样品的微结构和光学性质对其光催化机理进行了讨论。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张嘉羲
袁欢
刘禹彤
陈雨
徐明
关键词:  Fe掺杂Ag-ZnO  高分子网络凝胶法  光催化    
Abstract: Fe doped Ag-ZnO nanopowders were synthesized by polymer-network gel method. The microstructures and optical properties of the as-prepared samples were characterized by XRD, SEM, XPS, PL and UV-vis techniques, the photocatalytic activity of these samples was studied by analyzing the degradation of methyl orange and methylene blue under ultraviolet light and simulated sunlight, respectively. The results of XRD and SEM show that Fe doping improves the dispersion of Ag nanoparticles while reducing the grain size of ZnO. The XPS spectrum shows the coexistence of divalent and trivalent Fe, and with the increase of the Fe doping concentration, the Fe ion in the ZnO lattice changes from divalent to trivalent, resulting in the reduced intensity of blue emission peak revealed in the PL spectra. Among all samples, Zn0.96Fe0.01Ag0.03O exhibits the highest photocatalytic activity. Combined with the microstructure and optical properties, we discussed its photocatalytic mechanism.
Key words:  Fe doped Ag-ZnO    polymer-network gel method    photocatalytic
                    发布日期:  2019-04-03
ZTFLH:  O614.24+  
基金资助: 四川省学术带头人培养基金(26727502);四川省科技厅应用基础研究重点项目(2017JY0349);西南民族大学研究生创新型科研项目(CX2018SZ98)
作者简介:  张嘉羲,西南民族大学材料学硕士研究生,主要从事氧化物功能材料的研究。徐明,西南民族大学教授。
引用本文:    
张嘉羲, 袁欢, 刘禹彤, 陈雨, 徐明. Fe掺杂的Ag-ZnO纳米复合材料的合成及光催化性能[J]. 材料导报, 2019, 33(6): 941-946.
ZHANG Jiaxi, YUAN Huan, LIU Yutong, CHEN Yu, XU Ming. Synthesis and Photocatalytic Properties of Fe Doped Ag-ZnO Nanocomposites. Materials Reports, 2019, 33(6): 941-946.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201906006  或          http://www.mater-rep.com/CN/Y2019/V33/I6/941
1 Kamat P V. The Journal of Physical Chemistry C,2007,111(7),2834.
2 Chakrabarti S, Dutta B K. Journal of Hazardous Materials,2004,112(3),269.
3 Bai S N, Tsai H H, Tseng T Y. Thin Solid Films,2007,516(2),155.
4 Li Y L, Deng W H, Ji K J, et al. New Chemical Materials,2013,41(2),104(in Chinese).
李艳玲,邓卫华,冀克俭,等.化工新材料,2013,41(2),104.
5 Chen X, Li Y, Pan X, et al. Nature Communications,2016,7,12273.
6 Zhao F, Shi L Q, Cui J B, et al. Acta Physico-Chimica Sinica,2016,32(8),2069(in Chinese).
赵菲, 时林其, 崔佳宝, 等.物理化学学报,2016,32(8),2069.
7 Wu S D, Song Y L, Li C, et al. New Chemical Materials,2011,39(5),70(in Chinese).
吴诗德, 宋彦良, 李超, 等.化工新材料,2011,39(5),70.
8 Liu T, Li B, Hao Y, et al. Applied Catalysis B Environmental,2015,165,378.
9 Han Z, Ren L, Cui Z, et al. Applied Catalysis B Environmental,2012,126 (38), 298.
10 Du Y Y. A research on the microstructure and photocatalytic performance of Fe-doped zinc oxide. Master's Thesis. Northeastern University,China,2013(in Chinese).
杜艳艳. Fe掺杂ZnO的微结构及其光催化性能的研究. 硕士学位论文, 东北大学,2013.
11 Yu X H. The synthesis, doping and properties study of ZnO nano mate-rials. Ph.D. Thesis, China University of Geosciences, China,2015(in Chinese).
余小红. 纳米ZnO材料的合成、掺杂及其性能研究. 博士学位论文, 中国地质大学,2015.
12 Bousslama W, Elhouichet H, Férid M. Optik-International Journal for Light and Electron Optics,2017,134,88.
13 Yan X, Zou C, Gao X, et al. Journal of Materials Chemistry,2012,22(12),5629.
14 Ramírez-Ortega D, Meléndez A M, Acevedo-Peña P, et al. Electrochimica Acta, 2014,140(27),541.
15 Zhang L, Xu M, Yu F, et al. Acta Physica Sinica,2013,62(2),27501(in Chinese).
张丽, 徐明, 余飞,等.物理学报,2013,62(2),27501.
16 Zhou P F, Yuan H, Xu X N, et al. Acta Physica Sinica,2015,64(24),344(in Chinese).
周攀钒, 袁欢, 徐小楠,等.物理学报,2015,64(24),344.
17 Xu M, Yuan H, You B, et al. Journal of Applied Physics,2014,115(9),951.
18 Yuan H, Xu M, Du X.Materials Letters,2015,154,94.
19 Singh S, Barick K C, Bahadur D. International Journal of Nanoscience,2011,10,1001.
20 Georgekutty R, Seery M K, Pillai S C. Journal of Physical Chemistry C,2008,112(35),13563.
21 Reddy B S, Reddy S V, Reddy N K, et al. Advanced Materials Letters,2014,5(4),199.
22 Akbariadergani B, Saghi M H, Eslami A, et al. Environmental Technology,2017,39(12),1566.
23 Eslami A, Akbari-Adergani B, Bandpey A M, et al. Materials Letters,2017,197,205.
24 Meng A, Li X, Wang X, et al. Ceramics International,2014,40(7),9303.
25 Chen Y, Yu F, Liu Y T, et al. Materials Review B:Research Papers,2017,31(12),120(in Chinese).
陈雨, 余飞, 刘禹彤, 等.材料导报:研究篇,2017,31(12),120.
26 Nian H, Hahn S, Koo K, et al. Materials Letters,2010,64,157.
27 Zhang Q P, Xu X N, Liu Y T, et al. Scientific Reports,2017,7,46424.
28 Chen C, Zheng Y, Zhan Y, et al. Dalton Transactions,2011,40(37),9566.
29 Jin L Q, Yuan F L, Hou H G, et al. Science China,2004,34(4),310(in Chinese).
井立强, 袁福龙, 侯海鸽,等.中国科学,2004,34(4),310.
30 Karmakar D, Mandal S K, Kadam R M, et al. Physical Review B Condensed Matter,2007,75(14),1418.
31 Jing L, Qu Y, Wang B, et al. Solar Energy Materials & Solar Cells,2006,90(12),1773.
[1] 郭继鹏, 王敬锋, 林琳, 何丹农. 不同形貌的g-C3N4的制备研究进展[J]. 材料导报, 2019, 33(z1): 1-7.
[2] 冉涛, 张骞, 黎邦鑫, 刘旸, 李筠连. g-C3N4/泡沫镍整体式光催化剂的构建及光氧化去除NO[J]. 材料导报, 2019, 33(z1): 337-342.
[3] 肖健, 刘锦平, 刘先斌, 邱贵宝. 泡沫钛表面改性研究进展[J]. 材料导报, 2019, 33(9): 1558-1566.
[4] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[5] 熊德华, 邓砚文, 杜子娟, 张晴晴, 李宏. CuMnO2/TiO2复合光催化剂增效催化降解亚甲基蓝[J]. 材料导报, 2019, 33(8): 1262-1267.
[6] 占昌朝, 曹小华, 金文雄, 叶志刚, 谢宝华, 徐建兴, 周荣辉. 以水杨酸为模板分子的Nd掺杂分子印迹TiO2的制备及光催化性能[J]. 材料导报, 2019, 33(6): 947-953.
[7] 吕斌, 程坤, 高党鸽, 马建中. 中空结构纳米TiO2微球的可控制备[J]. 材料导报, 2019, 33(5): 770-776.
[8] 王永强, 陈曦, 刘昕, 刘芳, 赵朝成, 姜珊, 吴鹏伟. MWCNT/Bi2WO6复合光催化剂的制备及其活性研究[J]. 材料导报, 2019, 33(2): 211-214.
[9] 涂盛辉, 徐翀, 戴策, 林立, 彭海龙, 杜军. 双金属纳米Ag/Cu负载TiO2的制备及光催化制氢活性[J]. 材料导报, 2019, 33(16): 2633-2637.
[10] 黄宁岸, 赵梓俨, 邹彦昭, 周莹. 表面处理对Pt/Al2O3光催化氧化NO的影响[J]. 材料导报, 2019, 33(12): 1921-1925.
[11] 安伟佳, 田玲玉, 芮玉兰, 高雅萌, 崔文权. Ag@AgCl/Bi2WO6复合光催化剂的制备及可见光催化性能[J]. 材料导报, 2019, 33(12): 1932-1938.
[12] 李雅明, 李艳军, 张江, 丛野, 崔正威, 袁观明, 董志军, 邹涛, 李轩科. K3V5O14的合成及光催化性能和吸附性能[J]. 材料导报, 2019, 33(12): 1926-1931.
[13] 樊启哲, 廖春发, 陈鑫, 张志文, 余长林. 通过热处理调控光催化剂性质的研究进展[J]. 材料导报, 2019, 33(11): 1853-1859.
[14] 张宇, 王敏, 周鑫, 杨光俊, 柴天煜, 朱彤. Bi2MoO6/BiVO4异质结光催化剂的制备及性能[J]. 材料导报, 2019, 33(10): 1597-1601.
[15] 余明远, 王璐, 曲雯雯, 张利波, 张家麟, 陈阵. 硫化镉/石墨烯复合光催化剂的微波水热合成及DFT研究[J]. 材料导报, 2019, 33(10): 1602-1608.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed