Please wait a minute...
材料导报  2019, Vol. 33 Issue (23): 3949-3954    https://doi.org/10.11896/cldb.18100139
  无机非金属及其复合材料 |
若干因素对透水砖性能影响机理的研究进展
张雄, 王啸夫
同济大学先进土木工程材料教育部重点实验室,上海 201804
Research Progress on Influence Mechanism of Several Factors on PermeableBrick Performance
ZHANG Xiong, WANG Xiaofu
Key Laboratory of Advanced Civil Engineering Materials of Education Ministry, Tongji University, Shanghai 201804
下载:  全 文 ( PDF ) ( 1923KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 透水路面的设计是建设“海绵城市”最重要的一环。透水砖是使用量最大的透水路面材料,水泥基透水砖、陶瓷基透水砖及树脂基透水砖是目前常见的透水砖种类。其中,前两种透水砖问世较早但都存在显著的缺点。树脂基透水砖在透水率、强度、时效性、过滤性等方面均能大大超过国家现行标准,代表着未来的发展趋势。
影响树脂基透水砖性能的因素很多,如骨料的种类、粒径、圆度、级配,胶凝材料的种类、物化特征,孔隙率、孔隙结构以及制备方法等。系统研究各因素对透水砖透水性能和力学性能的影响规律与机理,有助于优化树脂基透水砖的成分设计和生产工艺。
通过对树脂基透水砖孔径、孔隙率、有效孔隙率的研究,可以反向证明采用开级配的骨料,在保留一端的环氧基的同时在树脂分子侧链接枝亲水基团,以及有效控制胶凝剂的使用量,均能对透水砖的透水性能产生积极作用。而在胶结成型之前对砂粒进行焙烧处理,可以去除骨料中的缺陷、降低砂粒表面可剥离吸附物的含量,同时还能增加树脂膜与砂粒表面的吸附强度,从而有效提升系统的整体强度。在成型方法方面,采用动载压制成型工艺会使材料的密实度提升,孔的分布更为均匀,强度也较静载压制成型得到相应提升。
本文旨在总结与探讨影响树脂基透水砖透水性能和力学性能的诸多因素,包括骨料、胶凝材料等组成材料,孔隙率、孔隙结构等孔隙特征,骨料焙烧、预覆膜处理和砖成型方式等制备工艺。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张雄
王啸夫
关键词:  透水路面  风积砂  环氧树脂  透水砖  透水系数  抗压强度    
Abstract: The design of permeable pavement is considered as a crucially important aspect in the construction of “sponge city”. The permeable pavement material with the largest amount of usage is permeable bricks, the common types of which are presently cement-based permeable bricks, ceramic-based permeable bricks and resin-based permeable bricks. Both of the former two types suffer obvious disadvantages though came into being earlier. And the resin-based permeable bricks exhibit outstanding performance and represent the future trend, as their water permeability, strength, timeliness, and filterability exceed greatly the current national standards.
There are many factors which have influences upon the performance of resin-based permeable bricks, such as aggregate type, particle size, roundness, gradation, condensed material type, physicochemical characteristics, porosity, pore structure, and fabrication method. The comprehensive research on the influence principle and mechanism of these factors can be conducive to the improvement and optimization over composition design and fabrication process of resin-based permeable bricks.
The studies of pore size, porosity and effective porosity have inversely proved that all of the following measures result in positive effect to permeable brick’s permeability: using open-graded aggregates, grafting hydrophilic groups on the end of resin’s side chain while preserving the epoxy part, effectively controlling adding amount of gelling agent. On the other hand, a pre-cementation calcination of the sand particles can decrease defects in the aggregate, reduce peelable adsorbate content on sand particle surfaces, and increase the adsorption strength between resin film and sand particle surfaces. Thereby the system can get significantly promoted in overall strength. In terms of molding method, the adoption of dynamic-load pressure molding has been found facilitative, compared to static-load pressure molding, to achieving higher compactness and more uniform pore distribution, and in consequence, higher mechanical strength of the brick product.
This paper aims to provide systematic summary and discussion over the various factors influencing permeability and mechanical properties of resin-based permeable bricks, with emphases on raw materials (aggregate, cementitious materials, etc.), pore characteristics (porosity, pore structure, etc.), and fabrication methodology (prior treatment of aggregate such as calcination and coating treatment, brick forming methods).
Key words:  permeable pavement    aeolian sand    epoxy resin    permeable brick    hydraulic conductivity    compressive strength
               出版日期:  2019-12-10      发布日期:  2019-09-30
ZTFLH:  TU522.1  
基金资助: “十三五”国家重点研发计划项目(2016YFC0700800)
作者简介:  张雄,同济大学材料学院教授委员会主席、国务院学位委员会材料学科评议组成员、国家“十三五”重点研发计划项目首席科学家、全国人大代表。作为同济大学教授以及项目负责人主持承担过多项国家省部级项目:国家自然科学基金项目、国家973项目、国家科技支撑计划项目和交通部西部科技项目、国家重点研发计划项目等。已有二十多项科研成果通过国家、省部级鉴定, 并实施产业化或在工程中实施应用。目前正在主持承担国家十三五重点研发计划项目。已在国内外学术期刊发表学术论文300多篇,正式出版专业著作16部,获得国家发明专利15项。
王啸夫,2011年6月毕业于武汉理工大学,获得工学学士学位。现为同济大学博士研究生,在张雄教授的指导下进行研究。目前主要研究领域为土木工程材料“海绵城市”建设。
引用本文:    
张雄, 王啸夫. 若干因素对透水砖性能影响机理的研究进展[J]. 材料导报, 2019, 33(23): 3949-3954.
ZHANG Xiong, WANG Xiaofu. Research Progress on Influence Mechanism of Several Factors on PermeableBrick Performance. Materials Reports, 2019, 33(23): 3949-3954.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18100139  或          http://www.mater-rep.com/CN/Y2019/V33/I23/3949
1 Scholz M, Grabowiecki P. Building and Environment,2007,42(11),3830.2 Liu W, Chen W, Feng Q, et al. Environmental Management,2016,58(6),1015.3 Wang M, Zhang D, Adhityan A, et al. Journal of Hydrology,2016,543,423.4 Liu Y N . Research on application and popularization of permeable pavement in sponge city. Master’s Thesis, Beijing University of Civil Engineering and Architecture, China,2017(in Chinese). 刘亚楠.海绵城市中透水铺装的应用推广研究.硕士学位论文,北京建筑大学,2017.5 Ao J. The effect of urban permeable pavement system on local thermal and moisture environment. Master’s Thesis, Harbin Institute of Technology, China,2014(in Chinese).敖靖.城市透水性铺装系统对局地热湿气候调节作用的研究.硕士学位论文,哈尔滨工业大学,2014.6 Qin Y C. Study on ground runoff reduction and pollutant reduction in urban typical pervious pavemenet.Master’s Thesis, Xi’an University of Technology, China,2017(in Chinese).秦余朝.城市典型透水铺装地面径流减控与污染物削减效果研究.硕士学位论文,西安理工大学,2017.7 Wang P P. Research on preparation and properties of resin sand-based permeable bricks. Master’s Thesis, Dalian University of Technology, China,2013(in Chinese).王萍萍.树脂砂基透水砖的制备及性能研究.硕士学位论文,大连理工大学,2013.8 Pieralisi R, Cavalaro S H P, Aguado A. Cement and Concrete Research,2017,102,149.9 Park S B, Tia M. Cement & Concrete Research,2004,34(2),177.10 Tennis P D, Leming M L, Akers D J. Pervious concrete pavements, Portland Cement Association, USA,2004.11 He T S, Zhao X G, Zhao S Y, et al. Journal of Wuhan University of Technology,2014,36(1),34(in Chinese).贺图升,赵旭光,赵三银,等.武汉理工大学学报,2014,36(1),34.12 Zhang L, Liu L S, Wu X Q, et al. Acta Materiae Compositae Sinica,2016(4),866(in Chinese).张丽,刘梁森,吴晓青,等.复合材料学报,2016(4),866.13 Yin H R, Wu L H, Chen F, et al. New Building Materials,2006(3),24(in Chinese).殷海荣,武丽华,陈福,等.新型建筑材料,2006(3),24.14 Wu J F, Chen J G, Xu X H, et al. Journal of Wuhan University of Technology,2009(19),27(in Chinese).吴建锋,陈金桂,徐晓虹,等.武汉理工大学学报,2009(19),27.15 Yin H R, Chen F, Xue L S, et al. China Ceramic,2005,41(6),20(in Chinese).殷海荣,陈福,薛立莎,等.中国陶瓷,2005,41(6),20.16 Manoharan C, Sutharsan P, Dhanapandian S, et al. Applied Clay Science,2011,54(1),20.17 Lou Y F, Tao Y Q, He D H, et al. Block-Brick-Tile,2015(11),31(in Chinese).楼跃丰,陶亚强,何迪华,等.砖瓦,2015(11),31.18 Xu J X. China Concrete and Cement Products,2018(2),77(in Chinese).许静贤.混凝土与水泥制品,2018(2),77.19 Zhang W M, Li L H, Zhu Y G, et al. Thermosetting Resin,2012(6),57(in Chinese).张伟民,李丽红,朱永刚,等.热固性树脂,2012(6),57.20 Yu W R, Qin W Z. New Building Materials,2008(10),63(in Chinese).于伟蓉,覃维祖.新型建筑材料,2008(10),63.21 Yang S Q, Huang S Z. Journal of Changsha University of Science and Technology:Natural Science,2017(4),30(in Chinese).杨三强,黄士周.长沙理工大学学报(自然科学版),2017(4),30.22 Li T. Preparation and properties of desert green brick. Master’s Thesis, Hainan University, China,2010(in Chinese).李婷.沙漠绿化砖的制备及性能研究.硕士学位论文,海南大学,2010.23 Hashemi B, Nemati Z A, Faghihi-Sani M A. Ceramics International,2006,32(3),313.24 Hurwitz G, Guillen G R, Hoek E M V. Journal of Membrane Science,2010,349(1),349.25 Drelich J, Wilbur J L, Miller J D, et al. Langmuir,1996,12(7),1913.26 Ko Y C, Ratner B D, Hoffman A S. Journal of Colloid & Interface Science,2016,82(1),25.27 Scales P J, Grieser F, Furlong D N, et al. Colloids & Surfaces,1986,21(12),55.28 Jiang L, Feng L. Bionic intelligent nano interface material, Chemical Industry Press, China,2007(in Chinese).江雷,冯琳.仿生智能纳米界面材料,化学工业出版社,2007.29 Li M. The World of Building Materials,2017,38(1),51(in Chinese).李铭.建材世界,2017,38(1),51.30 Kuang X, Sansalone J, Ying G, et al. Journal of Hydrology,2011,399(3),148.31 Chen J D. Pore structure design and performance optimization of dry pervious concrete.Master’s Thesis, China Building Materials Academy, China,2018(in Chinese).陈晋栋.干硬性透水混凝土的孔隙结构设计与性能优化.硕士学位论文,中国建筑材料科学研究总院,2018.32 Lian C Q, Yan Z G, Beecham S. Advanced Materials Research,2011,168-170,1590.33 Golroo A, Tighe S L. Construction & Building Materials,2011,25(10),4043.34 Bal’shin M Y, Trofimova A A. Soviet Powder Metallurgy & Metal Cera-mics,1965,4(8),637.35 Ryshkewitch E. Journal of the American Ceramic Society,2010,36(2),65.36 Schiller K K. Cement & Concrete Research,1971,1(4),419.37 Elhassan H, Kianmehr P. Road Materials & Pavement Design,2018,19(1),167.38 Lian C, Zhuge Y, Beecham S. Construction & Building Materials,2011,25(11),4294.39 Zhong R, Wille K. Construction and Building Materials,2016,109,177.40 Zhong R, Wille K. Cement and Concrete Composites,2016,70,130.41 Liu F Y. Studies on ecological pervious brick by making use of construction waste.Master’s Thesis, Guangdong University of Technology, China,2012(in Chinese).刘富业.利用建筑垃圾制作生态透水砖研究.硕士学位论文,广东工业大学,2012.42 Liu L. Producing method and paving design research of the sand-based concrete permeable pavement bricks. Master’s Thesis, Dalian University of Technology, China,2014(in Chinese).刘璐.砼砂基透水砖制备与铺装设计研究.硕士学位论文,大连理工大学,2014.43 Wang P P, Xu X Z. New Building Materials,2013(8),44(in Chinese).王萍萍,徐向舟.新型建筑材料,2013(8),44.
[1] 王志伟, 张春颖, 田超凯, 刘传瑞, 王赵雨, 仲流通, 刘恩赐. 填料对拉挤环氧树脂工艺及反应特性的影响[J]. 材料导报, 2019, 33(z1): 515-518.
[2] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[3] 候昱灼, 廖洪强, 高宏宇, 程芳琴. 不同条件下聚苯颗粒泡沫混凝土的发泡过程及发泡体性能研究[J]. 材料导报, 2019, 33(z1): 234-238.
[4] 张忠厚, 张光辉, 陈荣源, 韩琳, 谭延方, 闫春绵. 聚天冬氨酸酯型聚脲增韧结构型环氧树脂及其机理[J]. 材料导报, 2019, 33(6): 1061-1064.
[5] 巩位,余红发,麻海燕,达波. 全珊瑚海水混凝土配合比设计及评价方法[J]. 材料导报, 2019, 33(22): 3732-3737.
[6] 王楠,胡程耀,郭世艳,廖俊,霍冀川. 多巴胺修饰氮化硼对环氧树脂复合材料性能的影响[J]. 材料导报, 2019, 33(22): 3837-3841.
[7] 冯潇,康海澜,杨凤,方庆红. 杜仲胶/环氧树脂防腐涂料的制备与性能[J]. 材料导报, 2019, 33(22): 3847-3852.
[8] 魏波,周金堂,姚正军,钱逸,钱崑. 环氧树脂基体的原位增韧技术研究进展[J]. 材料导报, 2019, 33(17): 2976-2988.
[9] 王玉龙, 侯立杰, 刘志勇, 李世宇, 李卓辉. 水性聚氨酯改性环氧树脂乳液的涂膜性能研究[J]. 材料导报, 2019, 33(14): 2456-2460.
[10] 杨凯, 张之璐, 杨永, 韩昊, 黄文聪, 朱效宏, 唐德莎, 李爽, 杨长辉. 复合激发剂对碱矿渣胶结材水化进程及早期性能的影响[J]. 材料导报, 2019, 33(14): 2326-2330.
[11] 胡明玉, 付超, 魏丽丽, 刘章君. 等钒铁渣复合物改性硅藻土制备高强耐水调湿材料[J]. 《材料导报》期刊社, 2018, 32(8): 1230-1235.
[12] 张洁, 张建建, 孙国文, 杨建明, 汤青青. 三种固废微粉对磷酸钾镁水泥浆体早期性能影响及作用机理[J]. 材料导报, 2018, 32(20): 3553-3561.
[13] 余周辉,赵培仲,胡芳友. ES/CEP共混树脂紫外光固化行为及性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 263-267.
[14] 周雪艳, 马骉, 魏堃, 薄延震. 形状记忆氢化双酚A型环氧树脂的制备与性能[J]. 材料导报, 2018, 32(18): 3271-3275.
[15] 马宏强, 易成, 朱红光, 董作超, 陈宏宇, 王佳欣, 李德毅. 煤矸石集料混凝土抗压强度及耐久性能[J]. 《材料导报》期刊社, 2018, 32(14): 2390-2395.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed