Please wait a minute...
材料导报  2019, Vol. 33 Issue (23): 3921-3929    https://doi.org/10.11896/cldb.18120168
  无机非金属及其复合材料 |
电介质储能薄膜的研究现状及提高储能密度的方法
刁春丽1,2, 董乐3, 杨毅1, 刘韩星2
1 河南大学物理与电子学院,开封 475000
2 武汉理工大学材料复合新技术国家重点实验室,武汉 430070
3 国家知识产权局专利局专利审查协作河南中心,郑州 450000
Research Progress of Dielectric Energy Storage Thin Films and Methods forImproving Energy Storage Density
DIAO Chunli1,2, DONG Le3, YANG Yi1, LIU Hanxing2
1 School of Physics and Electronics, Henan University, Kaifeng 475000
2 State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070
3 State Intellectual Property Office Patent Office Patent Examination Collaboration Henan Center, Zhengzhou 450000
下载:  全 文 ( PDF ) ( 2305KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着能源危机和环境污染问题的日益突出,新能源的研发是当前人们密切关注的重要研究领域之一。除新能源的收集外,能量的存储也日益受到人们的重视。常见的储能器件有电池、燃料电池、超级电容器和电介质电容器等。其中电池和燃料电池的能量密度高,但功率密度低;传统电介质电容器的功率密度高,但储能密度低;超级电容器的功率密度和能量密度介于电池和传统电容器之间。
电介质电容器具有介电常数高、介电损耗低、功率密度高、充/放电速度快、工作电压/电流大、可靠性好、温度稳定性好等优点,已经被应用于脉冲功率器件领域。双轴拉伸聚丙烯(BOPP)已经实现了商业化应用。但电介质电容器固有的储能密度较低,限制了其应用范围。如何提高电容器的储能密度成为亟待解决的一个关键问题,也是目前人们研究的重点。与块体材料相比,薄膜电容器的耐压强度高,因此其储能密度高。本文的关注点就是无机储能薄膜的研究现状及提高其储能密度的方法。
目前已经对储能薄膜开展了大量的研究,其结构体系有很多,如钙钛矿结构、铋层状结构、焦绿石结构、单金属氧化物薄膜等。其中钙钛矿结构薄膜是研究最早、最多的一类。目前,用磁控溅射或激光脉冲沉积制备的无铅钙钛矿结构薄膜的储能密度达100 J/cm3以上。然而,由于薄膜制备方法多、工艺复杂,会产生很多因素影响其性能,特别是储能密度。薄膜工艺的可重复性和性能的稳定性是非常重要的。综合文献资料可知,提高储能密度的方法主要有:(1)元素掺杂或多相复合形成固溶体,可以提高极化和耐压强度,从而提高储能密度,该方法是一种比较简单易行的常见方法;(2)制备工艺的改进也可以提高薄膜的储能密度,改进的方法有退火工艺、局域场工程、取向、应力、电极等方面的调控;(3)叠层结构等异质结构界面调控是近年来兴起的一种提高薄膜储能密度的方法,已取得明显效果。
本文概述了评价电介质储能特性的主要参数,简要介绍了电介质的分类,归纳了钙钛矿结构、焦绿石结构、氧化物结构等几类储能薄膜的研究现状,分析总结了提高薄膜储能密度的方法,最后对无机储能薄膜的发展趋势进行了展望,以期对无机储能薄膜的研发提供一定的参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刁春丽
董乐
杨毅
刘韩星
关键词:  电介质  储能  薄膜  改性  储能密度    
Abstract: Due to the energy crisis and environmental pollution, the research and development of new energy is one of the important research issues and has attracted much attention nowadays. Besides the collection of new energy sources, the storage of energy has also received increasing attention. Usually, energy storage devices are batteries, fuel cells, super-capacitors, and dielectric capacitors. Among them, the batteries and fuel cells have high energy density, but the power density is low; the conventional dielectric capacitor has high power density, but the storage density is low; the power density and energy density of the super-capacitor are between the battery and the conventional capacitor.
Dielectric capacitors have the advantages of high dielectric constant, low dielectric loss, high power density, fast charge/discharge speed, large operating voltage/current, good reliability, and good temperature stability, and have been applied in the field of pulse power devices. Bia-xially oriented polypropylene (BOPP) has already been commercialized. However, dielectric capacitors have inherent shortage of low energy storage densities, which limits their applications range. As one focus of current research, it is a key issue to improve the energy storage density of capacitors. Compared with bulk materials, film capacitors have high electrical breakdown strength, and therefore have excellent energy storage densities. The focus of this paper is on the research status of inorganic energy storage films and methods to increase their energy storage density.
At present, a lot of researches have been carried out on energy storage thin films, and there are many structural systems, such as perovskite structure, strontium layer structure, pyrochlore structure, single metal oxide film, etc. Among them, perovskite structure film is the earliest and most common studied. Nowadays, the energy storage density of the lead-free perovskite structure film prepared by magnetron sputtering or laser pulse deposition is as high as 100 J/cm3 or more. However, due to the many methods of preparing the film and the complicated process, many factors can affect the performance of thin films, especially the energy storage density. The repeatability of the film process and the stability of the performance are very important. Based on the summary and analysis of literature, there are three methods to improve the energy storage density: element doping or multiphase solid solution is a relatively simple and common method, which can increase the polarization and breakdown strength, thereby increasing the energy storage density. Optimized preparation process can also improve the storage density of films. The modification methods include annealing process, local field engineering, orientation, stress, electrode and other aspects. The interface structure control of heterostructures is emerging in recent years and is a method for significantly increasing the energy storage density of a film capacitor.
In this paper, first the key parameters for evaluating the energy storage performance of dielectric materials are introduced. Secondly, a brief introduction about the classification of dielectrics is presented and the research status of several types of energy storage thin films (such as perovskite structure, pyrochlore structure and oxide structure, etc.) are summarized. Then, the methods for improvement in the energy storage density of thin films are analyzed. Finally, the research trend of ceramic thin films for energy storage is proposed, which would be beneficial for the deve-lopment of inorganic energy storage films.
Key words:  dielectircs    energy storage    thin films    modification    energy storage density
               出版日期:  2019-12-10      发布日期:  2019-09-30
ZTFLH:  TB34  
基金资助: 国家自然科学基金重大项目(51790490);国家自然科学基金-广东省联合基金(U1601209);国家自然科学基金青年项目(51802078)
作者简介:  刁春丽,河南大学物理与电子学院副教授。2005年毕业于武汉理工大学,获材料学硕士学位。现为武汉理工大学博士研究生,在刘韩星教授的指导下进行研究,主要研究领域为电介质储能。
刘韩星,武汉理工大学材料科学与工程学院教授、博士研究生导师。1990年在吉林大学取得博士学位,同年起在武汉理工大学工作。主要从事电介质材料和电池的研究工作。
引用本文:    
刁春丽, 董乐, 杨毅, 刘韩星. 电介质储能薄膜的研究现状及提高储能密度的方法[J]. 材料导报, 2019, 33(23): 3921-3929.
DIAO Chunli, DONG Le, YANG Yi, LIU Hanxing. Research Progress of Dielectric Energy Storage Thin Films and Methods forImproving Energy Storage Density. Materials Reports, 2019, 33(23): 3921-3929.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18120168  或          http://www.mater-rep.com/CN/Y2019/V33/I23/3921
1 Tong S, Ma B, Narayanan M, et al. ACS Applied Materials & Interfaces,2013,5(4),1474.2 Diao C L, Liu H X, Hao H, et al. Journal of Materials Science: Materials in Electronics,2018,29(7),5814.3 Zhong M, Chai L, Wang Y J. Applied Surface Science,2019,464,301.4 Brimmo A T, Sodiq A, Sofela A, et al. Renewable & Sustainable Energy Review,2017,74,474.5 Akuru U B, Kamper M J. IEEE Transactions on Industrial Electronics,2018,65(2),1828.6 Hao X H. Journal of Advanced Dielectrics,2013,3(1),1330001. 7 Li Q, Yao F Z, Liu Y, et al. Annual Review of Materials Research,2018,48,219.8 Yao Z H, Song Z, Hao H, et al. Advanced Materials,2017,29(20),1601727.9 Prateek, Thakur V K, Gupta R K. Chemical Reviews,2016,116(7),4260.10 Michael E K, Trolier-McKinstry S. Journal of the American Ceramic Society,2015,98(4),1223.11 Yuan Q B, Li G, Yao F Z, et al. Nano Energy,2018,52,203.12 Hou C M, Huang W, Zhao W, et al. ACS Applied Materials & Interfaces,2017,9(24),20484.13 Peng B L, Zhang Q, Li X, et al. Advanced Electronic Materials,2015,1(5),1500052.14 Cheng H B, Ouyang J, Zhang Y X, et al. Nature Communications,2017,8,1999.15 Uchino K, Zheng J H, Chen Y H, et al. Journal of Materials Science,2006,41(1),217.16 Guan Z D, Zhang Z T, Jiao J S. Physical properties of inorganic mate-rials, Tsinghua University Press, China,2013(in Chinese).关振铎,张中太,焦金生,无机材料物理性能,清华大学出版社,2013.17 Wu K, Wang Y, Cheng Y H, et al. Journal of Applied Physics,2010,107(6),064107.18 Ulrich R, Schaper L, Nelms D, et al. Journal of Microcircuits Electronic Packaging,2000,23(2),172 .19 Lou X J. Journal of Applied Physics,2009,105(2),024101.20 MacDougall F W, Ennis J B, Cooper R A, et al. In: Conference Record of the 14th IEEE International Pulsed Power Conference. Dallas,2003,pp.513.21 Palneedi H, Peddigari M, Hwang G T, et al. Advanced Functional Materials,2018,28(42),1803665.22 Mlüler K A. Japanese Journal of Applied Physics,1985,24,89.23 Yang H B, Yan F, Lin Y, et al. ACS Sustainable Chemistry & Enginee-ring,2017,5(11),10215.24 Park M H, Kim H J, Kim Y J, et al. Advanced Energy Materials,2014,4(16),1400610.25 Zhang L, Liu M, Ren W, et al. RSC Advance,2017,7(14),8388.26 Spahr H, Nowak C, Hirschberg F, et al. Applied Physics Letters,2013,103(4),042907.27 Koo C Y, Eum Y J, Hwang S O, et al. Ferroelectrics,2014,465(1),89.28 Ma B H, Hu Z Q, Dorris S E, et al. Journal of Materials Science: Mate-rials in Electronics,2015,26(12),9279.29 Kang S B, Kim H S, Lee J G, et al. Ceramics International,2016,42(1),1740.30 Zhang Y L, Li W L, Qiao Y L, et al. Applied Physics Letters,2018,112(9),093902.31 Pan H, Zeng Y, Shen Y, et al. Journal of Materials Chemistry A,2017,5(12),5920.32 Won S S, Kawahara M, Kuhn L, et al, Applied Physics Letters,2017,110(15),152901.33 Diao C L, Liu H X, Zheng H W, et al. Journal of Alloys and Compound,2018,765,362.34 Michael E K, Trolier-McKinstry S. Journal of Applied Physics,2015,118(5),054101.35 Yang B B, Guo M Y, Song D P, et al. Applied Physics Letters,2017,111(18),183903.36 Parui J, Krupanidhi S B. Applied Physics Letters,2008,92(19),192901.37 Hao X H, Zhai J W, Yao X. Journal of the American Ceramic Society,2009,92(5),1133.38 Hao X H, Wang Y, Zhang L, et al. Applied Physics Letters,2013,102(16),163903.39 Luo B C, Dong H J, Wang D Y, et al. Journal of the American Ceramic Society,2018,101(8),3460.40 Cho S, Yun C, Kim Y S, et al. Nano Energy,2018,45,398.41 Gao W B, Yao M W, Yao X, Ceramics International,2017,43(16),13069.42 Chen T, Wang J B, Zhong X L, et al. Ceramics International,2014,40(4),5327.43 Tong S, Ma B H, Narayanan M, et al. ACS Applied Materials & Interfaces,2013,5(4),1474.44 Ge J, Dong X L, Chen Y, et al. Applied Physics Letters,2013,102(14),142905.45 Sa T L, Cao Z P, Wang Y J, et al. Applied Physics Letters,2014,105(4),043902.46 Zhang L W, Hao X H, Yang J C, et al. Applied Physics Letters,2013,103(11),113902.47 Ge J, Remiens D, Costecalde J, et al. Applied Physics Letters,2013,103(16),162903.48 McMillen M, Douglas A M, Correia T M, et al. Applied Physics Letters,2012,101(24),242909.49 Gao W B, Yao M W, Yao X. ACS Applied Materials & Interfaces,2018,10(34),28745.50 Instan A A, Pavunny S P, Bhattarai M K, et al. Applied Physics Letters,2017,111(4),142903.51 Sun Z X, Ma C R, Liu M, et al. Advanced Materials,2017,29(5),1604427.52 Shen Y, Hu Y H, Chen W W, et al. Nano Energy,2015,18,176.53 Yang B B, Guo M Y, Jin L H, et al. Applied Physics Letters,2018,112(3),033904.54 Fan Q L, Liu M, Ma C R, et al. Nano Energy,2018,51,539.55 Su Z, Yao M W, Yao X. Journal of Materials Chemistry C,2018,6(29),7920.56 Yang B B, Guo M Y, Tang X W, et al. Journal of Materials Chemistry C,2019,7,1888.57 Wang D X, Clark M B, Trolier-McKinstry S. Journal of the American Ceramic Society,2018,101(8),3443.58 Hu Z Q, Ma B H, Koritala R E, et al. Applied Physics Letters,2014,104(26),263902.59 Wang X L, Zhang L W, Hao X H, et al. Journal of Materials Science: Materials in Electronics,2015,26(12),9583.60 Pan H, Ma J, Ma J, et al. Nature Communications,2018,9,1813.61 Sun N N, Li Y, Zhang Q W, et al. Journal of Materials Chemistry C,2018,6(40),10693.62 Liang Z S, Liu M, Ma C R, et al. Journal of Materials Chemistry A,2018,6(26),12291.63 Zhu H F, Liu M L, Zhang Y X, et al. Acta Materialia,2017,122,252.64 Diao C L, Liu H X, Lou G H, et al. Journal of Alloys and Compounds,2019,781,378.
[1] 古丽妮尕尔·阿卜来提, 麦合木提·麦麦提, 阿比迪古丽·萨拉木, 买买提热夏提·买买提, 吴赵锋, 孙言飞. Ni 掺杂对BiFeO3薄膜晶体结构和磁性的影响[J]. 材料导报, 2019, 33(z1): 108-111.
[2] 孙亚兵, 包兆先, 霍子伟, 杨玲, 许积文, 周昌荣, 王华. (Bi0.5Na0.5)0.94Ba0.06Ti1-x(Yb0.5Nb0.5)xO3无铅陶瓷的结构,储能、应变、介电及阻抗性能研究[J]. 材料导报, 2019, 33(z1): 171-177.
[3] 原禧敏, 杨宏伟, 李郁秀, 巢云秀, 李耀, 陈家林, 陈力. 无卤素离子辅助合成纳米银线及其在柔性透明导电薄膜中的应用[J]. 材料导报, 2019, 33(z1): 300-302.
[4] 薛秀丽, 曾超峰, 王世斌, 李林安, 王志勇. 溶剂对PMMA基底上金属薄膜形貌的影响[J]. 材料导报, 2019, 33(z1): 412-415.
[5] 柴凡超, 常树全, 王国辉, 姚初请, 戴耀东. 辐射改性对铅/铜高分子辐射屏蔽材料性能的影响[J]. 材料导报, 2019, 33(z1): 444-447.
[6] 关文学, 周键, 王三反, 李艳红. 等离子体技术接枝苯磺酸甜菜碱改性对离子交换膜电阻的影响[J]. 材料导报, 2019, 33(z1): 462-465.
[7] 赖榕永, 王温馨, 谢雯倩, 丁益民. MA-PA-SA/改性粉煤灰复合相变储能材料的制备与性能[J]. 材料导报, 2019, 33(z1): 219-222.
[8] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[9] 秦小凤, 曹嘉真, 汪小莉, 张贤明, 吕晓书. 纳米零价铁优化体系及其在环境中的应用研究进展[J]. 材料导报, 2019, 33(9): 1550-1557.
[10] 李芮, 施宇震, 宁平, 谷俊杰, 关清卿, 耿瑞文, 孟凡凡. 改性活性炭吸附甲苯废气的研究进展[J]. 材料导报, 2019, 33(7): 1133-1140.
[11] 冯晓倩, 顾文, 张霞, 蒋浩. 基于有机薄膜晶体管与有机电化学晶体管的生物传感器研究进展[J]. 材料导报, 2019, 33(7): 1243-1250.
[12] 王岚, 李冀, 桂婉妹. 表面活性剂对温拌胶粉改性沥青高低温性能的影响[J]. 材料导报, 2019, 33(6): 986-990.
[13] 谢鹏飞, 陈勰, 丁峰, 张乃文, 李建波, 任杰. 缩聚法制备热固性聚乳酸及其力学性能和热稳定性研究[J]. 材料导报, 2019, 33(6): 1042-1046.
[14] 温变英, 段磊. PEI/Ni梯度电磁屏蔽薄膜材料耐腐蚀性研究[J]. 材料导报, 2019, 33(6): 1065-1069.
[15] 戈明亮, 席壮壮, 梁国栋. 二维层状材料麦羟硅钠石的研究进展[J]. 材料导报, 2019, 33(5): 754-760.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed