Please wait a minute...
材料导报  2019, Vol. 33 Issue (15): 2532-2537    https://doi.org/10.11896/cldb.18070146
  无机非金属及其复合材料 |
一种不稳定的共晶生长方式:倾斜共晶生长的研究进展
魏岑,李向明
昆明理工大学材料科学与工程学院,昆明 650093
An Unstable Eutectic Growth Mode: Research Progress of Tilt Eutectic Growth
WEI Cen, LI Xiangming
School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093
下载:  全 文 ( PDF ) ( 2748KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 共晶组织的制备过程是指在一定溶质浓度的合金熔体中,在冷却阶段同时析出紧密相邻的两种或多种不同固相的过程。这些析出的固相如果能规则地分布于基体中,就能制备出具有多种特殊性能的共晶组织材料。共晶组织材料作为耐高温部件材料在航空航天以及核工业等领域具有重要的应用价值。有些科学家在共晶理论的基础上提出了应用定向凝固法制备规则的多孔金属结构的新工艺,而多孔金属独特的力学性能和热学性能预示着它具有广阔的应用前景。
制备共晶组织材料的关键是在给定的制备条件下有效地控制共晶的凝固过程。共晶凝固过程中存在两个至关重要的问题:一是共晶凝固过程的动力学;二是共晶固-液界面、固-固界面的形成与演化。这两者决定着最终产品材料的品质与性能,需要进行大量深入的研究。两者的相互影响构成了一个不可分割的非线性动力系统。共晶生长理论的研究重点是探究二者在共晶生长中的耦合行为。因此,共晶生长的预期理论研究成果将使人们对微观组织的形成与界面的演化有更深刻的理解。基于这些理解,可以更好地控制凝固过程,使界面产生需要的微观结构,从而获得力学性能更加优良的产品。
理论上而言,定向凝固实验中层片状共晶的生长方向和温度梯度方向应一致。但是在一定的生长条件下,共晶固-液界面会沿着垂直于牵拉速度的方向移动,导致固-固界面与牵拉速度方向呈一定的倾角,从而形成共晶生长的另一种模式,即倾斜共晶生长。对倾斜共晶生长的研究有助于提高共晶材料的性能,而且倾斜共晶生长的相关研究工作也是共晶凝固理论的重要组成部分,对理解和解决工业生产中共晶材料制备的诸多难题具有重要的指导意义。目前,研究者对层片状倾斜共晶生长的影响因素和形貌开展了大量的理论研究和实验报道。本文从倾斜共晶生长的发展和定向凝固技术方面,对层状倾斜共晶生长的研究进展与方法进行阐述,主要包括倾斜共晶生长中各种参数以及各向异性对倾斜共晶生长形貌的影响规律,同时对该领域的未来研究方向进行展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏岑
李向明
关键词:  倾斜共晶  定向凝固  数值模拟  实时原位观察    
Abstract: The preparation process of eutectic structure refers to the process of precipitating two or more different solid phases closely adjacent to each other during cooling in the alloy melt with a certain concentration of solute. If the two closely adjacent two or many different solid phase processes are formed, at the same time, the precipitated solid can be distributed regularly in the matrix, a variety of eutectic material with special properties can be prepared. And eutectic structure materials are widely used in aerospace and nuclear industry. On the basis of eutectic theory, some scientists have proposed a new process of preparing regular porous metal structure by directional solidification method, and the unique mechanical and thermal properties of porous metal indicate that it has a broad application prospect.
The essential problem in the preparation of eutectic microstructure is that how to effectively control the solidification process of eutectic under given preparation conditions. Dynamics of eutectic solidification process, formation and evolution of eutectic solid-liquid interface and solid-solid in-terface are two basic problems in eutectic solidification, they constitutes an indivisible nonlinear dynamical system. Meanwhile, they determine the quality and properties of final product materials,so they are needed to be studied deeply. The key factor of eutectic growth theory is to explore the coupling behavior of the two in eutectic growth. Therefore, the theoretical results of eutectic growth will enable people to understand the formation of microstructures and the evolution of interfaces. So, we can better control the solidification process and obtain better mechanical properties of the product.
It has been known for a long time that, the directional solidification of eutectic alloys at near eutectic compositions, the theoretical orientation of lamellar eutectic growth is consistent with that of temperature gradient. But there are certain growth conditions, the eutectic solid-liquid interface will move along in the vertical direction of the pulling speed, so it will result in a certain angle of inclination between the solid-solid interface and the traction velocity, Thus, another mode of eutectic growth is produced: inclined eutectic growth. The theory of eutectic solidification can be further improved, the properties of eutectic materials can be improved and the problem of preparing eutectic materials in industrial production can be solved, if we study the tilt growth of eutectic. A large number of theoretical and experimental studies have been carried out on the influence factors and morphology of the layered eutectic tilt growth. In this paper, the research progress and methods of stratified eutectic slant growth from the development of oblique eutectic growth and orientation solidification technology are described. The influence of various parameters and anisotropic on the morphology of tilt eutectic growth is summarized. We point out some questions in current researches, and propose the new perspectives for future research.
Key words:  tilt eutectic    directional solidification    numerical simulation    real-time in-situ observation
               出版日期:  2019-08-10      发布日期:  2019-07-02
ZTFLH:  TG141  
基金资助: 国家自然科学基金(51561016);云南省科技项目(2016FB089)
作者简介:  魏岑,2016年6月毕业于重庆文理学院,获得工学学士学位。现为昆明理工大学材料科学与工程学院硕士研究生,在李向明副教授的指导下进行研究。目前主要研究领域为倾斜共晶生长的机制。
李向明,昆明理工大学材料科学与工程学院副教授、硕士研究生导师。2004年7月本科毕业于唐山师范学院应用数学专业,2011年6月在北京科技大学材料加工工程专业取得博士学位。2011年七月进入昆明理工大学材料科学与工程学院,2013年8月被评选为副教授。主要从事有色金属熔炼与成型技术、热加工过程中的模拟仿真、多孔金属材料制备的研究工作。近年来发表论文20余篇,包括Journal of Crystal Growth和Journal of Applied Physics等期刊。
引用本文:    
魏岑,李向明. 一种不稳定的共晶生长方式:倾斜共晶生长的研究进展[J]. 材料导报, 2019, 33(15): 2532-2537.
WEI Cen, LI Xiangming. An Unstable Eutectic Growth Mode: Research Progress of Tilt Eutectic Growth. Materials Reports, 2019, 33(15): 2532-2537.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18070146  或          http://www.mater-rep.com/CN/Y2019/V33/I15/2532
[1] Evans A G, Hutchinson J W, Ashby M F. Progress in Materials Science,1998,43(3),171.
[2] Hyun S K, Murakami K, Nakajima H. Materials Science & Engineering A,2001,299(1),241.
[3] Nakajima H, Fabrication H. Proceedings of the Japan Academy, Series B,2010,86(9),884.
[4] Karami M, Mahmudi R. Materials Science & Engineering A,2013,576(4),156.
[5] Zhu T, Cui C, Zhang T, et al. Materials & Design,2014,57,245.
[6] Qu Z, Wu L, Wu R, et al. Materials & Design,2014,54(2),792.
[7] Mahmudi R, Shalbafi M, Karami M, et al. Materials & Design,2015,75(2),184.
[8] Dong H W, Wang L M, Liu K, et al. Materials & Design,2016,90,157.
[9] Collinsj B, Levin H. Physical Review B,1985,31(9),6119.
[10] Langer J S, Müller-Krumbhaar H. Acta Metallurgica,1978,26(11),1689.
[11] Gaginal P G, Fife P C. Physical Review B,1986,33(11),7792.
[12] Gaginal P G, Fife P C. Physical Review B,1986,34(7),4940.
[13] Fife P C, Gill G S. Physica D: Nonlinear Phenomena,1989,35(1),267.
[14] Fife P C, Gill G S. Physical Review A,1991,43(2),843.
[15] Langer J S. Physical Review Letters,1980,44(15),1023.
[16] Akamatsu S, Bottin-Rousseau S. Physical Review Letters,2004,93(17),175701.
[17] Andrea Parisi. Acta Materialia,2008,56(6),1348.
[18] Parisi A, Plapp M. Materials Science,2010,90,26010.
[19] Mikael Perrut, Sabine Bottin-Rousseau. Acta Materialia,2013,61(18),6802.
[20] Lahiri A, Tiwary C, Chattopadhyay K, et al. Computational Materials Science,2017,130,109.
[21] Noubary K D, Kellner M, Steinmetz P, et al. Computational Materials Science,2017,138,403.
[22] Akamatsu S, Ihle T. Physical Review E,1997,56(56),4479.
[23] Alain K, Armand S. Metallurgical & Materials Transactions A,1996,27(3),635.
[24] Akamatsu S, Faivre G. Physical Review E,2000,61,3757.
[25] Ghosh S, Choudhury A, Plapp M, et al. Physical Review E,2015,91(2),022407.
[26] Nestler B, Wheeler A. Physica D: Nonlinear Phenomena,2000,138(1),114.
[27] Faivre G, Mergy J. Physical Review A,1992,45(10),7320.
[28] Faivre G, Mergy J. Physical Review A,1992,46(2),963.
[29] Faivre G. Journal of Crystal Growth,1996,166(1-4),29.
[30] Akamatsu S, Faivre G. Physical Review E,2000,61(4 Pt A),3757.
[31] Witusiewiczn V T, Sturz L, Hecht U, et al. Journal of Crystal Growth,2014,386(386),69.
[32] Plapp M, Bottin-Rousseau S, Faivre G, et al. Comptes Rendus Mécanique,2017,345(1),56.
[33] Datye V, Langer J S. Physical Review B,1981,24(8),4155.
[34] Karma A. Physical Review Letters,1987,59(1),71.
[35] Karma A, Sarkissian A. Metallurgical & Materials Transactions A,1996,27(3),635.
[36] Ginibre M, Akamatsu S, Faivre G. Physical Review E,1997,56(1),780.
[37] Akamatsu S, Sabine B R, Faivre G. Physical Review Letters,2004,93(17),175701.
[38] Faivre G, Cheveigne D E, Guthmann C, et al. Europhysics Letters,1989,9,779.
[39] Coullet P, Goldstein R E, Gunaratne G H. Physical Review Letters,1989,63(18),1954.
[40] Kassner K, Misbah C. Physical Review A,1992,45(10),7372.
[41] Akamatsu S, Bottin-Rousseau S, Serefoglu M, et al. Acta Materialia,2012,60(6-7),3199.
[42] Faivre G, Bottin-Rousseau S, Akamatsu S. Comptes Rendus-Physique,2013,14(2-3),149.
[43] Akamatsu S, Bottin-Rousseau S, Serefoglu M, et al. Acta Materialia,2012,60(6-7),3206.
[44] Bottin-Rousseau S, Serefoglu M, Akamatsu S, et al. Materials Science and Engineering,2011,27,012088.
[45] Ghmadh J, Debierre J M, Deschamps J, et al. Acta Materialia,2014,74(4),255.
[46] Collins J B, Levin H. Physical Review B,1985,31(9),6119.
[47] Langer J S. Review of Modern Physics,2007,52(1),1.
[48] Gaginal P G, Fife P C. Physical Review B,1986,33(11),7792.
[49] Xu J J. Theoretical guidance of solidification kinetics and interface stability, Science Press, China,2006(in Chinese).
徐鉴君.凝固过程动力学与交界面稳定性理论导引,科学出版社,2006.
[50] Gaginal P G, Fife P C. Physical Review B,1986,34(7),4940.
[51] Gaginal P G. Physical Review A,1989,39(11),5887.
[52] Fife P C, Gill G S. Physica D: Nonlinear Phenomena,1989,35(1),267.
[53] Fife P C, Gill G S. Physical Review A,1991,43(2),843.
[54] Supriyo Ghosh, Mathis Plapp. Acta Materialia,2017,140,140.
[55] Somboonsuk K, Mason J T, Trivedi R. Metallurgical & Materials Transactions A,1984,15(6),967.
[56] Seetharaman V, Trivedi R. Metallurgical Transactions A,1988,19(12),2955.
[57] Mergy J, Faivre G, Guthmann C, et al. Journal of Crystal Growth,1993,134(3-4),353.
[58] Borzsonyi T, Toth-Katona T, Buka A, et al. Physical Review E,2000,62,7817.
[59] Akamatsu S, Plapp M, Faivre G, et al. Physical Review E,2002,66(1),030501.
[60] Akamatsu S, Bottin-Rousseau S, Perrut M, et al. Journal of Crystal Growth,2007,299(2),418.
[61] Hunt J D, Jackson K A. Transactions of the Metallurgical Society of AIME,1966,236(6),843.
[62] Jackson K A, Hunt J D. Dynamics of Curved Fronts,1988,236(8),363.
[63] Zener C. Transactions of the Metallurgical Society of AIME,1946,167(1946),550.
[64] Utter B, Bodenschatz E. Physical Review E,2002,66(1),051604.
[1] 杨金祥, 石爽, 姜大川, 李旭, 李鹏廷, 谭毅, 姚玉杰, 池明, 张润德, 张建帅. 多晶硅定向凝固过程中温度对凝固速率的影响[J]. 材料导报, 2019, 33(z1): 28-32.
[2] 于海群. 底部保温结构对大尺寸蓝宝石晶体生长影响的数值模拟及实验研究[J]. 材料导报, 2019, 33(z1): 37-40.
[3] 崔利群, 韩胜利, 李达人, 胡建召, 刘祖岩. 钨铜粉末轧制的数值模拟研究[J]. 材料导报, 2019, 33(z1): 358-361.
[4] 杨亚涛, 郭宝超, 龚宏伟, 蒋恩. 基于有限元分析的第三代压水堆支承柱组件激光焊接工艺研究[J]. 材料导报, 2019, 33(z1): 420-424.
[5] 王泳丹, 刘子铭, 郝培文. 综论沥青的疲劳损伤自愈合行为:理论研究,评价方法,影响因素,数值模拟[J]. 材料导报, 2019, 33(9): 1517-1525.
[6] 卢百平, 崔春娟, 田露露, 问亚岗, 王佩. 布里奇曼定向凝固Ni-12%Si过共晶的弹性模量与断裂韧性[J]. 材料导报, 2019, 33(8): 1383-1388.
[7] 陈祥楷, 李向明. 探究二元共晶的生长过程:实时原位观察、数值模拟与解析解研究[J]. 材料导报, 2019, 33(5): 871-880.
[8] 徐从昌, 叶拓, 唐明, 郭鹏程, 唐徐, 吴远志, 李落星. 动态载荷下7005铝合金力学行为及数值模拟[J]. 材料导报, 2019, 33(4): 670-673.
[9] 浦娟, 谢依汝, 胡庆贤, 胥国祥, 朱蔡琛. 单缆式焊丝GMAW电弧物理行为的数值模拟[J]. 材料导报, 2019, 33(4): 689-693.
[10] 朱靖, 李勇, 王莹, 李焕, 赵亚茹. 不同定向凝固速率下Cu-2.5%Cr合金中带状组织的形成机理[J]. 材料导报, 2019, 33(2): 309-313.
[11] 代文杰,潘诗琰,申小平,徐驰,范沧. 介观尺度下液相烧结过程的数值模拟研究进展[J]. 材料导报, 2019, 33(17): 2929-2938.
[12] 李文旭,马昆林,龙广成,谢友均,马聪,李宁. 自密实混凝土拌合物稳定性动态监测及数值模拟研究进展[J]. 材料导报, 2019, 33(13): 2206-2213.
[13] 丁述宇, 马国政, 徐滨士, 王海斗, 陈书赢, 何鹏飞, 王译文. 等离子喷涂层微观成形过程数值模拟研究现状[J]. 材料导报, 2019, 33(11): 1889-1896.
[14] 田捍卫, 王爱琴, 谢敬佩, 苌清华, 刘帅洋. 铜铝复合板铸轧工艺优化及实验分析[J]. 材料导报, 2019, 33(10): 1706-1711.
[15] 安晓龙, 吕云卓, 覃作祥, 陆兴. 同轴送粉激光3D打印光粉耦合作用以及熔池气液界面追踪数值模拟的研究进展[J]. 材料导报, 2019, 33(1): 167-174.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed