Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (4): 574-578    https://doi.org/10.11896/j.issn.1005-023X.2018.04.013
  材料研究 |
铸造Mg-Gd-Y-Nd-Zr合金在时效过程中的组织与性能演变
唐昌平1, 2, 李国栋3, 李志云4, 孙玹琪4
1 湖南科技大学材料科学与工程学院,湘潭 411201;
2 高温耐磨材料及制备技术湖南省国防科技重点实验室,湘潭 411201;
3 苏州热工研究院有限公司设备管理部,深圳 518124;
4 株洲六零八所科技有限公司,株洲 412002
Microstructure and Mechanical Property Evolution of Mg-Gd-Y-Nd-Zr Casting Alloy During Aging Treatment
TANG Changping1, 2, LI Guodong3, LI Zhiyun4, SUN Xuanqi4
1 School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201;
2 High Temperature Wear Resistant Materials and Preparation Technology of Hunan Province National Defence Science and Technology Laboratory, Xiangtan 411201;
3 Equipment Management Department, Suzhou Nuclear Power Research Institute Company Limited, Shenzhen, 518124;
4 Science and Technology Company Limited of No. 608 Research Institute, Zhuzhou, 412002
下载:  全 文 ( PDF ) ( 5134KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用金相观察、硬度测试、单轴拉伸、扫描电镜观察、能谱分析、透射电镜观察等手段,研究了铸造Mg-Gd-Y-Nd-Zr合金在时效过程中的组织与性能演变。结果表明,经固溶处理后,合金具有较强的塑性变形能力,延伸率可达10%以上,但强度较低。随时效程度增加,合金强度升高塑性降低,经225 ℃/3 h时效处理后,合金为欠时效状态,与基体共格的β″相是主要的强化相,断口以解理面、韧窝、撕裂棱和晶界为主要特征。经峰值时效处理后,与基体呈半共格关系的β'相是主要的强化相,合金抗拉强度超过300 MPa,但塑性急剧降低,断口以解理面、撕裂棱和晶界为主要特征,与欠时效样品相比,解理面所占比例明显增加,且解理面及晶界光滑。进入过时效状态后,合金的强度降低,但延伸率有所提升,断口以晶界和解理面为主要特征。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐昌平
李国栋
李志云
孙玹琪
关键词:  Mg-Gd-Y合金  时效处理  微观组织  力学性能  断口分析    
Abstract: Microstructure and mechanical property evolution of Mg-Gd-Y-Nd-Zr casting alloy during aging treatment were investigated by means of optical microscopy (OM), hardness testing, uniaxial tensile testing, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and transmission electron microscopy (TEM). The results indicated that the alloy exhibited good ductility and low strength after solution treatment, and the elongation exceeded 10%. As the aging time prolonged, the strength increased while the ductility decreased. The sample was in under-aged state when treated at 225 ℃ for 3 h, and β″was the main strengthening phase, which was coherent with the matrix. The fracture surface of the sample featured cleavage planes, dimples, tea-ring ridges and grain boundaries. In the peak-aged state, the strengthening phase was β', which is semi-coherent with the matrix. The ultimate tensile strength of the peak-aged sample exceeded 300 MPa, while the ductility decreased sharply. The fracture surface of the sample featured cleavage planes, tearing ridges and grain boundaries. The proportion of cleavage planes was obviously higher than that in under-aged sample, and the cleavage plane and the grain boundary were smooth. The strength increased but the ductility decreased when the sample was over-aged. Grain boundaries and cleavage planes were the main characterization of the fracture surface.
Key words:  Mg-Gd-Y alloy    aging treatment    microstructure    mechanical property    fracture analysis
               出版日期:  2018-02-25      发布日期:  2018-02-25
ZTFLH:  TG146.2+2  
基金资助: 国家自然科学基金(51605159); 湖南省自然科学基金(2016JJ5042)
作者简介:  唐昌平:男,1983年生,博士,讲师,主要研究方向为镁合金强韧化 E-mail:tcpswnu@163.com
引用本文:    
唐昌平, 李国栋, 李志云, 孙玹琪. 铸造Mg-Gd-Y-Nd-Zr合金在时效过程中的组织与性能演变[J]. 《材料导报》期刊社, 2018, 32(4): 574-578.
TANG Changping, LI Guodong, LI Zhiyun, SUN Xuanqi. Microstructure and Mechanical Property Evolution of Mg-Gd-Y-Nd-Zr Casting Alloy During Aging Treatment. Materials Reports, 2018, 32(4): 574-578.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.04.013  或          http://www.mater-rep.com/CN/Y2018/V32/I4/574
1 Zhang X M, Peng Z K, Chen J M, et al. Heat-resistant magnesium alloys and their development[J].The Chinese Journal of Nonferrous Me-tals,2004,14(9):1443(in Chinese).
张新明,彭卓凯,陈健美,等.耐热镁合金及其研究进展[J].中国有色金属学报,2004,14(9):1443.
2 Wu G H, Chen Y S, Ding W J. Current research, application and future prospect of magnesium alloys in aerospace industry[J].Manned Spaceflight,2016,22(3):281(in Chinese).
吴国华,陈玉狮,丁文江.镁合金在航空航天领域研究应用现状与展望[J].载人航天,2016,22(3):281.
3 Chen Q W, Tang A T, Xu T Y, et al. High performance cast magne-sium rare-earth alloys: retrospect and prospect[J].Materials Review A:Review Papers,2016,30(9):1(in Chinese).
陈巧旺,汤爱涛,许婷熠,等.高性能铸造稀土镁合金的发展[J].材料导报:综述篇,2016,30(9):1.
4 Zhang D F, Zhang H J, Lan W, et al. Some research progress of high-strength magnesium alloys[J].Transactions of Materials and Heat Treatment,2016,33(6):1(in Chinese).
张丁非,张红菊,兰伟,等.高强镁合金的研究进展[J].材料热处理学报,2016,33(6):1.
5 Rokhlin L L. Magnesium alloys containing rare earth metals: structure and properties[M].London:Taylor & Francis,2003.
6 Friedrich H E, Mordike B L. Magnesium technology: metallurgy, design data, applications[M].Berlin:Springer,2006.
7 Czerwinski F, Trojanova Z, Szaraz Z, et al. Magnesium alloys—Design, processing and properties[M].Rijeka,Croatia:InTech,2011.
8 Honma T, Ohkubo T, Kamado S, et al. Effect of Zn additions on the age-hardening of Mg-2.0Gd-1.2Y-0.2Zr alloys[J].Acta Materialia,2007,55(12):4137.
9 Xu C, Zheng M Y, Chi Y Q, et al. Microstructure and mechanical properties of the Mg-Gd-Y-Zn-Zr alloy fabricated by semi-continuous casting[J].Materials Science and Engineering:A,2012,549:128.
10 Zhang S, Liu W C, Gu X Y, et al. Effect of solid solution and aging treatments on the microstructures evolution and mechanical properties of Mg-14Gd-3Y-1.8Zn-0.5Zr alloy[J].Journal of Alloys and Compounds,2013,557(1):91.
11 Wu Y J, Xu C, Zheng F Y, et al. Formation and characterization of microstructure of as-cast Mg-6Gd-4Y-xZn-0.5Zr (x=0.3, 0.5 and 0.7 wt.%) alloys[J].Materials Characterization,2013,79:93.
12 Jafari Nodooshan H R, Liu W C, Wu G H, et al. Microstructure cha-racterization and high-temperature shear strength of the Mg-10Gd-3Y-1.2Zn-0.5Zr alloy in the as-cast and aged conditions[J].Journal of Alloys and Compounds,2015,619:826.
13 Chen J, Wang Q D, Zhao Z, et al. Microstructure and mechanical pro-perties of Mg-8.5Gd-2.0Y-1.0Ag-0.4Zr alloy with high strength and ductility[J].High Technology Letters,2010,20(4):427(in Chinese).
陈杰,王渠东,赵政,等.高强高韧Mg-8.5Gd-2.0Y-1.0Ag-0.4Zr合金的组织与性能[J].高技术通讯,2010,20(4):427.
14 Wang Q D, Chen J, Zhao Z, et al. Microstructure and super high strength of cast Mg-8.5Gd-2.3Y-1.8Ag-0.4Zr alloy[J].Materials Science and Engineering: A,2010,528(1):323.
15 Tang C P, Liu W H, Chen Y Q, et al. Effects of thermal treatment on microstructure and mechanical properties of a Mg-Gd-based alloy plate[J].Materials Science and Engineering:A,2016,659:63.
[1] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[2] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[3] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[4] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[5] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[6] 张冠星, 薛行雁, 龙伟民, 钟素娟, 孙华为, 董宏伟. BAg45CuZn钎料硫化处理组织和性能演变特性[J]. 材料导报, 2019, 33(z1): 425-427.
[7] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[8] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[9] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[10] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[11] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[12] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[13] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[14] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[15] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed