Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (4): 579-583    https://doi.org/10.11896/j.issn.1005-023X.2018.04.014
  材料研究 |
糊状区渗氮对Cr10Mn9Ni0.7合金氮含量及凝固相变过程的影响
金青林, 汪洋, 曹磊, 宋群玲
昆明理工大学材料科学与工程学院,昆明 650093
Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy
JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling
School of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093
下载:  全 文 ( PDF ) ( 2322KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 研究了糊状区保温对Cr10Mn9Ni0.7合金凝固过程和氮含量及相变过程的影响。结果表明,随着糊状区保温时间的延长,铸锭中的氮含量逐渐升高,同时铸锭中的气孔率逐渐降低。当氮气压力为0.1 MPa时,氮含量由0.17%升高到0.23%, 而气孔率则从1.86%降至1.37%;当氮气压力为0.4 MPa时,氮含量由0.29%升高到0.37%,而气孔率从1.41%降至1.06%。糊状区保温的增氮机制可归结为:在糊状区保温会促进包晶反应进程,使更多的铁素体转变为奥氏体;同时糊状区保温能够提高残留液相中的氮含量,进而提高“通道状”奥氏体中的氮含量。糊状区保温能够消除铁素体阱,从而降低气孔率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
金青林
汪洋
曹磊
宋群玲
关键词:  糊状区保温  氮含量  显微组织  相变    
Abstract: The effect of nitriding of Cr10Mn9Ni0.7 alloy in mushy zone on solidification, nitrogen content and phase transformation was investigated. The results showed that the nitrogen content raised with nitriding time, and the occurrence of gas pore defects was reduced. When the nitrogen pressure was 0.1 MPa, nitrogen content increased from 0.17% to 0.23%, while the porosity declined from 1.86% to 1.37%. When the nitrogen pressure was 0.4 MPa, nitrogen content increased from 0.29% to 0.37%, while the porosity declined from 1.41% to 1.06%. The mechanism of the nitrogen content improvement by nitriding in mushy zone can be ascribed to the facilitation of peritectic reaction and diffusion of nitrogen from liquid into austenite. The increase of the nitrogen content of channel like austenite in the residual liquid is another reason for the nitrogen content improvement. Melt holding in mushy zone can avoid the “ferritic trap”, and thus reduce the occurrence of the gas pore defects.
Key words:  melt holding in mushy zone    nitrogen content    microstructure    phase transformation
               出版日期:  2018-02-25      发布日期:  2018-02-25
ZTFLH:  TG142  
  TG113  
基金资助: 国家自然科学基金(51464026)
作者简介:  金青林:男,1971年生,博士,教授,主要从事金属凝固方向的研究 E-mail:clcaoleicl@126.com
引用本文:    
金青林, 汪洋, 曹磊, 宋群玲. 糊状区渗氮对Cr10Mn9Ni0.7合金氮含量及凝固相变过程的影响[J]. 《材料导报》期刊社, 2018, 32(4): 579-583.
JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy. Materials Reports, 2018, 32(4): 579-583.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.04.014  或          http://www.mater-rep.com/CN/Y2018/V32/I4/579
1 Simmons J W. Overview: High-nitrogen alloying of stainless steels[J].Materials Science and Engineering:A,1996,207(2):159.
2 Lo K H, Shek C H, Lai J K L. Recent developments in stainless steels[J].Materials Science and Engineering R:Reports,2009,65(4-6):39.
3 Liu H D, Wang D Z, Wei H D, et al. Research progress in high nitrogen austenite stainless steel[J].Special Steel,2009,30(4):45(in Chinese).
刘海定,王东哲,魏捍东,等.高氮奥氏体不锈钢的研究进展[J].特殊钢,2009,30(4):45.
4 Lang Y, Qu H, Chen H, et al. Research progress and development tendency of nitrogen-alloyed austenitic stainless steels[J].Journal of Iron and Steel Research(International),2015,22(2):91.
5 Lang Y P, Chen H T, Weng Y Q, et al. Applications of Thermo-Calc in research of high nitrogen austenitic stainless steels[J].Journal of Materials Engineering,2013(5):16(in Chinese).
郎宇平,陈海涛,翁宇庆,等.热力学计算在高氮奥氏体不锈钢研究中的应用[J].材料工程,2013(5):16.
6 Li H B. Metallurgical fundamental and properties of high nitrogen austenitic stainless steels[D].Shenyang:Northeastern University,2008(in Chinese).
李花兵.高氮奥氏体不锈钢的冶炼理论基础及其材料性能研究[D].沈阳:东北大学,2008.
7 Oshima T, Habara Y, Kuroda K. Efforts to save nickel in austenitic stainless steels[J].Transactions of the Iron and Steel Institute of Japan,2007,47(3):359.
8 Xiang H L, Huang W L, Liu D, et al. Effect of N content on microstructure and properties of 29Cr casting super duplex stainless steel[J].Acta Metallurgica Sinica,2010,46(3):304(in Chinese).
向红亮,黄伟林,刘东,等.N含量对29Cr铸造超级双相不锈钢组织及性能的影响[J].金属学报,2010,46(3):304.
9 Maier G G, Astafurova E G, Melnikov E V, et al. The effect of hydrogen on strain hardening and fracture mechanism of high-nitrogen austenitic steel[J].IOP Conference Series: Materials Science and Engineering,2016,140(1):12005.
10 Li J Y, Zhao P, Yanagimoto J, et al. Effects of heat treatment on the microstructures and mechanical properties of a new type of nitrogen-containing die steel[J].International Journal of Minerals,Metallurgy,and Materials,2012,19(6):511.
11 Li J, Liu H, Huang P. Effects of pre-precipitation of Cr2N on microstructures and properties of high nitrogen stainless steel[J].Journal of Central South University of Technology,2012,19(5):1189.
12 Sun G, Zhang Y, Sun S, et al. Plastic flow behavior and its relationship to tensile mechanical properties of high nitrogen nickel-free austenitic stainless steel[J].Materials Science and Engineering:A,2016,662:432.
13 García C, Martín F, Tiedra P De, et al. Pitting corrosion behaviour of PM austenitic stainless steels sintered in nitrogen-hydrogen atmosphere[J].Corrosion Science,2007,49(4):1718.
14 Zhang H, Wang D, Xue P, et al. Microstructural evolution and pitting corrosion behavior of friction stir welded joint of high nitrogen stainless steel[J].Materials & Design,2016,110:802.
15 Wang Y T, Ren Y B, Yang K, et al. Effects of high temperature nitriding on microstructure and mechanical properties of high nitrogen nickel-free stainless steel[J].Heat Treatment of Metals,2012(5):98(in Chinese).
王耘涛,任伊宾,杨柯,等.高温渗氮工艺对高氮无镍不锈钢组织及力学性能的影响[J].金属热处理,2012(5):98.
16 Cisneros M M A V. Development of austenitic nanostructures in high-nitrogen steel powders processed by mechanical alloying[J].Metallurgical and Materials Transactions A,2002,33(7):2139.
17 Zhang F, Li G Q, Zhu C Y. Pressurized induction melting of high nitrogen Fe-Cr-Mn-Ni austenite stainless steel[J].Special Steel,2005,26(5):13(in Chinese).
张峰,李光强,朱诚意.高氮Fe-Cr-Mn-Ni系奥氏体不锈钢的加压感应熔炼[J].特殊钢,2005,26(5):10.
18 Dong T L, Li G Q. Pressurized induction melting of Fe-Cr-V high nitrogen steels and its deoxidation with Al[J].Journal of Iron and Steel Research,2008,20(3):9(in Chinese).
董廷亮,李光强.加压感应熔炼Fe-Cr-V系高氮钢及其铝脱氧[J].钢铁研究学报,2008,20(3):9.
19 Wang S H, Wu Y H, Zhao D G. Effect of solidification pressure on nitrogen macro-segregation in high nitrogen steel[J].Foundry Technology,2013(7):848(in Chinese).
王书桓,吴彦辉,赵定国.凝固压力对高氮钢中氮宏观偏析的影响[J].铸造技术,2013(7):848.
20 Yang S, Lee Z. A method for predicting nitrogen gas pores in nitrogen alloying stainless steels[J].Materials Science and Engineering:A,2006,417(1-2):307.
21 Ridolfi M R, Tassa O. Formation of nitrogen bubbles during the solidification of 16—18% Cr high nitrogen austenitic stainless steels[J].Intermetallics,2003,11(11-12):1335.
22 Svyazhin A G A B. Critical nitrogen concentration in high-nitrogen steels for the production of a dense ingot[J].Metallurgist,2015,58(11):959.
23 Griesser S, Bernhard C, Dippenaar R. Effect of nucleation undercooling on the kinetics and mechanism of the peritectic phase transition in steel[J].Acta Materialia,2014,81:111.
24 Huang T, Jin Q L. Effect of melt holding in mushy zone on nitrogen content and microstructure of 201 austenitic stainless steel[J].Hot Working Technology,2016,45(19):87(in Chinese).
黄通,金青林.糊状区保温时间对201奥氏体不锈钢组织的影响[J].热加工工艺,2016,45(19):87.
25 Fu J W, Yang Y S. Solidification behavior in three-phase region of AISI 304 stainless steel[J].Materials Letters,2013,93:18.
[1] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[2] 邱凌, 吴红庆, 张乐, 吴晓春. 碳含量对Cr-Mo-V系模具钢连续冷却转变规律的影响[J]. 材料导报, 2019, 33(z1): 386-391.
[3] 赖榕永, 王温馨, 谢雯倩, 丁益民. MA-PA-SA/改性粉煤灰复合相变储能材料的制备与性能[J]. 材料导报, 2019, 33(z1): 219-222.
[4] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[5] 陈丽萍, 蔡亮, 李光华, 周强. 基于CiteSpace的储热技术研究进展与趋势[J]. 材料导报, 2019, 33(9): 1505-1511.
[6] 王川, 李德富. 冷轧变形量对5A02铝合金管材组织和性能的影响[J]. 材料导报, 2019, 33(8): 1361-1366.
[7] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[8] 肖长江. 钙钛矿铁电体在超高压下的铁电重现[J]. 材料导报, 2019, 33(7): 1163-1168.
[9] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[10] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[11] 张煜, 聂登攀, 曹建新. 二氧化硅杂质对重晶石碳热还原反应的影响及其相变行为分析[J]. 材料导报, 2019, 33(6): 936-940.
[12] 张潇华, 于思荣, 郭丽娟, 周扬理. 硅含量对Al-Si-Cu相变储能材料腐蚀性的影响[J]. 材料导报, 2019, 33(4): 582-585.
[13] 温丽, 薛松柏, 马超力, 龙伟民, 钟素娟. 钎焊温度对纳米银焊膏真空钎焊Ni200合金接头组织与性能的影响[J]. 材料导报, 2019, 33(3): 386-389.
[14] 方振邦, 张志强, 李颖, 尹华, 邢艳双, 何长树. 7N01S-T5铝合金厚板搅拌摩擦焊接头的晶间腐蚀行为[J]. 材料导报, 2019, 33(2): 304-308.
[15] 陈永城, 罗子艺, 张宇鹏, 易耀勇, 李明军. 紫铜/304不锈钢激光焊接接头显微组织及力学性能[J]. 材料导报, 2019, 33(2): 325-329.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed