Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (14): 2503-2507    https://doi.org/10.11896/j.issn.1005-023X.2018.14.032
  高分子与聚合物基复合材料 |
纳米粒子定向细微化PAI/EP体系的微观相容结构及其摩擦性能
李孟宇, 李巧玲, 石凯, 杨冰玉
中北大学理学院,太原 030051
Micro-compatible Structure of PAI/EP System with Nano-particle Oriented Refinement and Its Frictional Properties
LI Mengyu, LI Qiaoling, SHI Kai, YANG Bingyu
School of Science, North University of China, Taiyuan 030051
下载:  全 文 ( PDF ) ( 3042KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过纳米二氧化硅(SiO2)调整PAI/EP共混体系微观结构,并利用红外谱图(IR)、扫描电镜(SEM)、MRH-3摩擦磨损试验机分析共混体系的反应机制、微观形貌、摩擦性能。结果表明:PAI/EP共混组分中,在纳米粒子填料EP含量为3%(质量分数)时,纳米粒子极大地拓宽了两相之间共连续组成范围,提高了两相之间的共连续结构的稳定性,并大幅提升了复合材料的摩擦性能,降低了摩擦系数及磨损率。同时由于纳米粒子的双渗流效应与定向聚集作用,使得共连续结构更加细微化,而细微化的结构使得摩擦过程中的磨合时间较短,与金属基材的真实接触面积减小;随着纳米填料含量的增加,复合材料的摩擦系数以及磨损率降低,摩擦系数降低了46.8%,磨损率降低了37.5%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李孟宇
李巧玲
石凯
杨冰玉
关键词:  共连续结构  稳定性  定向聚集  细微化  摩擦磨损    
Abstract: The microstructure of PAI/EP blends was adjusted by nano-silica (SiO2). The reaction mechanism, microstructure and friction properties were analyzed by infrared spectroscopy (IR), scanning electron microscopy (SEM), MRH-3G friction and wear tester. The results showed that the nanoparticles greatly broadened the co-continuous range between the two phases when the nanoparticles were 3wt% EP in the EP/PAI blends,and improved the stability of the co-continuous structure between the two phases, improved the friction performance greatly and reduced the friction coefficient and the wear rate of the composites. At the same time, the co-continuous structure became more smaller due to the double-seepage effect and the directional aggregation of the nano-particles, which shortened the running time of the friction process and reduced the true contact area with the metal substrate. The increase of the nanofiller reduced the friction coefficient and the wear rate. The friction coefficient decreased by 46.8%, the wear rate decreased by 37.5%.
Key words:  co-continuous structure    stability    directional aggregation    fineness    friction and wear
               出版日期:  2018-07-25      发布日期:  2018-07-31
ZTFLH:  TQ325  
基金资助: 国家自然科学基金(51272239);山西省青年科学基金(2010021022-3);山西省回国留学人员科研资助项目(2014-6);中北大学科技立项(20171449)
作者简介:  李孟宇:男,1994年生,硕士研究生,主要从事高性能复合材料的制备及研究 E-mail:leelimengyu@163.com 李巧玲:女,1965年生,教授,主要从事新型材料的制备和研究 E-mail:qiaolingl@163.com
引用本文:    
李孟宇, 李巧玲, 石凯, 杨冰玉. 纳米粒子定向细微化PAI/EP体系的微观相容结构及其摩擦性能[J]. 《材料导报》期刊社, 2018, 32(14): 2503-2507.
LI Mengyu, LI Qiaoling, SHI Kai, YANG Bingyu. Micro-compatible Structure of PAI/EP System with Nano-particle Oriented Refinement and Its Frictional Properties. Materials Reports, 2018, 32(14): 2503-2507.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.14.032  或          http://www.mater-rep.com/CN/Y2018/V32/I14/2503
1 Hugues C,Michel F,Éric D,et al.Dielectric properties of epoxy/montmorillonite nanocomposites and nanostructured epoxy/SiO2/montmorillonite microcomposites[J]. Polymer Composites,2016,37(1):115.
2 Jiang Jiandi. Studies on microstructure control and thermal expansion behaviior of polymer blends[D]. Shanghai:East China University of Science and Technology,2013.
江建第.高分子共混物的微结构调控及其热膨胀行为的研究[D].上海:华东理工大学,2013.
3 Fan-Long Jin, Xiang Li, Soo-Jin Park. Synthesis and application of epoxy resins: A review[J]. Journal of Industrial and Engineering Chemistry,2015,29:1.
4 Mihu G,Mihalache I,Graur I,et al.Comparative study regarding friction coefficient for three epoxy resins[J]. IOP Conference Series: Materials Science and Engineering,2017,174(1):12.
5 Agrawal S,Singh K K,Sarkar P K.A comparative study of wear and friction characteristics of glass fibre reinforced epoxy resin, sliding under dry, oil-lubricated and inert gas environments[J]. Tribology International,2016,96:217.
6 Chen Jia,Chen Bin,Li Jingyu,et al.Enhancement of mechanical and wear resistance performance in hexagonal boron nitride-reinforced epoxy nanocomposites[J]. Polymer International,2017,66(5):659.
7 Kotiba H,Mosab K,Fawaz D,et al.Mechanical properties and compatibility of polylactic acid/polystyrene polymer blend[J]. Materials Letters,2016,164:409.
8 Chen Ruey Shan,Ahmad S,Gan S,et al.Effect of polymer blend matrix compatibility and fibre reinforcement content on thermal stability and flammability of ecocomposites made from waste materials[J]. Thermochimica Acta,2016,640:52.
9 Michael D Kass,Charles D.Compatibility of dimethyl ether (DME) and diesel blends with fuel system polymers: A hansen solubility analysis approach[J]. SAE International Journal of Fuels and Lubricants,2016,9(1):71.
10 Toyoaki H,Hisao M,Daisuke K,et al.Construction of a blood-compatible interface based on surface segregation in a polymer blend[J]. Polymer,2015,78:219.
11 Shib S B,Uwe G Carsten Z,et al. Design and properties of high-performance polyamide 6/fluoroelastomer blends by electron-induced reactive processing[J]. European Polymer Journal,2016,85:508.
12 Tao Fangfang,Dietmar Auhl,Anne-Christine Baudouin,et al. Inf-luence of multiwall carbon nanotubes trapped at the interface of an immiscible polymer blend on interfacial tension[J]. Macromolecular Chemistry and Physics,2013,214(3):350.
13 Zonder L,Mccarthy S,Rios F,et al.Viscosity ratio and interfacial tension as carbon nanotubes distributing factors in melt-mixed blends of polyamide 12 and high-density polyethylene[J]. Advances in Polymer Technology,DOI:10.1002/adv.21427.
14 Son Y. Measurement of interfacial tension between polyamide-6 and poly(styrene-co-acrylonitrile) by breaking thread method[J]. Polymer,2001,42(3):1287.
15 Ning Nanying,Hu Linjia,Yao Pengjun, et al.Study on the microstructure and properties of bromobutyl rubber (BIIR)/polyamide-12(PA12) thermoplastic vulcanizates (TPVs)[J]. Journal of Applied Polymer Science,DOI:10.1002/app.43043.
16 Kong Miqiu,Huang Yajiang,Lv Yadong,et al.Formation and stability of string phase in polyamide 6/polystyrene blends in confined flow: Effects of nanoparticles and blend ratio[J]. AIChE Journal,2016,62(2):564.
17 Banerjee S S,Kumar K D,Bhowmick A K.Distinct melt viscoelastic properties of novel nanostructured and microstructured thermoplastic elastomeric blends from polyamide 6 and fluoroelastomer[J]. Macromolecular Materials and Engineering,2015,300(3):283.
18 Jeongin G,Margaret J S.Improvement of the mechanical behavior of bioplastic poly(lactic acid)/polyamide blends by reactive compatibilization[J]. Journal of Applied Polymer Science,DOI:10.1002/app.43350.
19 Nora A,José I Eguiazábal. Organoclay-reinforced compatible blends of polypropylene with an amorphous polyamide[J]. Polymer Engineering and Science,2014,54(12):5764.
20 Kong Miqiu,Huang Yajiang,Lv Yadong,et al.Flow-induced morphological instability in nanosilica-filled polyamide 6/polystyrene blends[J]. Polymer,2014,55(16):4348.
21 Chapleau N,Favis B D,Carreau P J.Measuring the interfacial tension of polymers in the presence of an interfacial modifier: Migrating the modifier to the interface[J]. Journal of Polymer Science Part B,1998,36(11):1947.
[1] 张笑, 宋武林, 卢照, 曾大文, 谢长生. 纳米二氧化钛分散液稳定性的研究进展[J]. 材料导报, 2019, 33(z1): 16-21.
[2] 李梦楠, 赵宇光, 谢同伦. 不同蠕化率蠕墨铸铁的干滑动摩擦磨损性能[J]. 材料导报, 2019, 33(z1): 366-368.
[3] 王宏, 李方, 张十庆, 何钦生, 张登友, 邹兴政, 赵安中, 谭军. 核场测温用热电偶合金材料的研究[J]. 材料导报, 2019, 33(z1): 398-402.
[4] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[5] 郭策安, 赵宗科, 赵爽, 卢凤生, 赵博远, 张健. 电火花沉积AlCoCrFeNi高熵合金涂层的高速摩擦磨损性能[J]. 材料导报, 2019, 33(9): 1462-1465.
[6] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[7] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[8] 谢鹏飞, 陈勰, 丁峰, 张乃文, 李建波, 任杰. 缩聚法制备热固性聚乳酸及其力学性能和热稳定性研究[J]. 材料导报, 2019, 33(6): 1042-1046.
[9] 张寒松, 胡志德, 晏华, 薛明, 贾艺凡. 纳米SiO2/黄原胶复合触变剂对磁流变液性能的影响[J]. 材料导报, 2019, 33(6): 1052-1056.
[10] 王恩胜, 余丽萍, 廉世勋, 周文理. 全无机钙钛矿量子点的研究进展[J]. 材料导报, 2019, 33(5): 777-783.
[11] 王子博, 刘满平, 姜奎, 秦希, 章勇, 王圣楠, 陈健. 退火时间对高压扭转Al-1.0Mg铝合金组织及性能的影响[J]. 材料导报, 2019, 33(2): 321-324.
[12] 钟晓聪, 陈芳会, 王瑞祥, 徐志峰. 硫酸体系铅基阳极稳定性研究进展[J]. 材料导报, 2019, 33(17): 2862-2867.
[13] 仇磊, 陈鼎, 朱莉莉, 陈耀彤, 王思远, 冯鹏飞. 氧化石墨烯作为润滑油添加剂的分散稳定性[J]. 材料导报, 2019, 33(16): 2638-2643.
[14] 卫芳彬, 张雷阳, 王颖, 李洋, 刘岗. 二氧化铈掺杂钛酸铋钠基陶瓷的高储能密度及温度稳定性[J]. 材料导报, 2019, 33(16): 2648-2653.
[15] 尹华伟, 李明伟, 周川, 胡志涛. ADP晶体生长过程中的运动方式对晶体性能的影响[J]. 材料导报, 2019, 33(16): 2660-2664.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed