Please wait a minute...
材料导报  2022, Vol. 36 Issue (19): 21030149-7    https://doi.org/10.11896/cldb.21030149
  高分子与聚合物基复合材料 |
典型植物叶面微结构特征与润湿异性研究
李明升1, 胡海豹1, 卢丙举2, 秦丽萍2, 曹刚1, 史瑞琦1, 陈效鹏1
1 西北工业大学航海学院,西安 710072
2 中船重工第七一三研究所,郑州 450000
Study on the Microstructural Characteristics and Anisotropic Wetting Properties of Typical Plant Leaf Surfaces
LI Mingsheng1, HU Haibao1, LU Bingju2, QIN Liping2, CAO Gang1, SHI Ruiqi1, CHEN Xiaopeng1
1 School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
2 No.713 Research Institute of CSIC, Zhengzhou 450000, China
下载:  全 文 ( PDF ) ( 19810KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 各向异性润湿表面由于具有特殊的润湿特性,在微流控、生物医学、雾水收集和燃料电池排水等方面具有广阔的应用前景。采用接触角测量仪、扫描电镜(SEM)等观测了沿阶草、芦苇、银杏叶等具有各向异性润湿的典型植物叶面。研究表明,不仅与水稻叶相似的具有沟壑结构的叶片(如沿阶草叶和芦苇叶等)呈现各向异性润湿特性,而且无明显微沟壑结构的叶片(如银杏叶)同样具有明显的各向润湿异性。可见,规则条状微沟壑并不是形成各向润湿性差异的唯一决定性特征,类似于银杏叶表面乳突状微形貌的变密度排布也能形成类似的各向异性润湿状态。另外,基于三相接触线的不对称分布特点,对该类润湿异性现象的产生机制进行了初步解释。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李明升
胡海豹
卢丙举
秦丽萍
曹刚
史瑞琦
陈效鹏
关键词:  润湿异性  植物叶面  三相接触线  微纳结构    
Abstract: Anisotropic wetted surfaces have broad application potential in areas, such as microfluidics, biomedicine, mist collection and fuel cell drainage, because of their special wetting properties. In this study, the surfaces of typical plant leaves with anisotropic wetting properties (e.g., ophiopogon bodinieri leaves, phragmites australis leaves and ginkgo biloba leaves) were observed using contact-angle measuring instrument and scanning electron microscope. Results reveal as following: leaves with a groove-like structure similar to that of rice paddy leaves, such as ophiopogon bodinieri and phragmites australis, exhibit anisotropic wetting properties; leaves without a notable groove-like structure, such as ginkgo biloba, similarly display marked anisotropic wetting properties. The evidence suggests that regular banded micro-grooves are not the only decisive feature that results in anisotropic wetting properties. A two-dimensional variable-density papillary micro-morphological layout similar to that on the surface of ginkgo biloba leaves can also lead to a similar anisotropic wetting state. Furthermore, the mechanism by which this type of anisotropic wetting phenomenon occurs can be preliminarily explained based on the asymmetrical distribution pattern of three-phase contact lines.
Key words:  anisotropic wetting    plant leaf surface    three-phase contact line    micro/nano-structure
出版日期:  2022-10-10      发布日期:  2022-10-12
ZTFLH:  O363.2  
基金资助: 国家自然科学基金(51879218;52071272);陕西省自然科学基础研究计划(2020JC-18);中央高校基本科研业务费专项资金(3102020HHZY030014)
通讯作者:  huhaibao@nwpu.edu.cn   
作者简介:  李明升,2019年在兰州理工大学获得学士学位,2022年在西北工业大学获得硕士学位,主要从事流体与固体表界面行为研究。
胡海豹,教授,博士研究生导师。2002年在西北工业大学获得学士学位,2005年在西北工业大学获得硕士学位,2009年在西北工业大学获得博士学位。2005年4月就职于西北工业大学航海学院,长期致力于特种表面力学行为与机制研究工作,已发表学术论文 50 余篇,授权发明专利 10 多项。
引用本文:    
李明升, 胡海豹, 卢丙举, 秦丽萍, 曹刚, 史瑞琦, 陈效鹏. 典型植物叶面微结构特征与润湿异性研究[J]. 材料导报, 2022, 36(19): 21030149-7.
LI Mingsheng, HU Haibao, LU Bingju, QIN Liping, CAO Gang, SHI Ruiqi, CHEN Xiaopeng. Study on the Microstructural Characteristics and Anisotropic Wetting Properties of Typical Plant Leaf Surfaces. Materials Reports, 2022, 36(19): 21030149-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030149  或          http://www.mater-rep.com/CN/Y2022/V36/I19/21030149
1 Neinhuis C, Barthlott W. Annals of Botany, 1997, 79(6), 667.
2 Feng L, Zhang Y N, Xi J M, et al. Langmuir, 2008, 24(8), 4114.
3 Gao X F, Jiang L. Nature, 2004, 432(7013), 36.
4 Hiratsuka K, Bohno A, Endo H. Journal of Physics, 2007, 89, 012012.
5 Gursoy M, Harris M T, Carletto A, et al. Colloids and Surfaces A, 2017, 529, 959.
6 Hu H B, Dong Q Q, Qin L P, et al. Applied Surface Sciecce, 2020, 502, 143904.
7 Hu H B, Yu S X, Song D, et al. Langmuir, 2016, 32 (29), 7339.
8 Wang J Z, Zheng Z H, Li H W, et al. Nature Materials, 2004, 3 (3), 171.
9 Sommers A D, Yu R, Okamoto N C, et al. International Journal of Refrigeration-Revue Internationale Du Froid, 2012, 35 (6), 1766.
10 Xia D Y, Johnson L M, Lopez G P. Advanced Materials, 2012, 24 (10), 1287.
11 Feng L, Li S H, Li Y S, et al. Advanced Materials, 2002, 14 (24), 1857.
12 Xu J K, Hou Y G, Lian Z X, et al. Nanomaterials, 2020, 10 (11), 2140.
13 Song Y G, Jiang S J, Li G Q, et al. ACS Applied Materials & Interfaces, 2020, 12 (37), 42264.
14 Chai H, Tian Y, Yu S H, et al. Advanced Materials Interfaces, 2020, 7 (8), 10.
15 Cheng Z J, Zhang D J, Lv T, et al. Advanced Functional Materials, 2018, 28 (7), 1705002.
16 Yunusa M, Ozturk F E, Yildirim A, et al. RSC Advances, 2017, 7 (25), 15553.
17 Long J Y, Fan P, Jiang D F, et al. Advanced Materials Interfaces, 2016, 3(24), 1600641.
18 Tanaka D, Buenger D, Hildebrandt H, et al. Langmuir, 2013, 29 (40), 12331.
19 Wu H, Zhang R, Sun Y, et al. Soft Matter, 2008, 4 (12), 2429.
20 Yoshimitsu Z, Nakajima A, Watanabe T, et al. Langmuir, 2002, 18 (15), 5818.
21 Guo Z G, Liu W M. Plant Science, 2007, 172 (6), 1103.
22 Li W, Fang G P, Li Y F, et al. Journal of Physical Chemistry B, 2008, 112 (24), 7234.
23 Li W, Amirfazli A. Journal of Colloid Interface Science, 2005, 292 (1), 195.
24 Li W, Amirfazli A. Advances in Colloid and Interface Science, 2007, 132 (2), 51.
25 Yao C W, Tang S R, Sebastian D, et al. Applied Surface Science, 2020, 504, 8.
26 Ozcelik H G, Satiroglu E, Barisik M. Nanoscale, 2020, 12 (41), 21376.
27 Kim D, Ryu S. Langmuir, 2020, 36 (46), 14031.
28 Cheng C T, To S, Zhang G. Journal of Industrial and Engineering Che-mistry, 2020, 91, 69.
29 Tie L, Li J, Guo Z G, et al. Colloid and Surface A, 2019, 562, 170.
30 Kumar M, Bhardwaj R, Sahu K C. Langmuir, 2019, 35 (8), 2957.
31 Bliznyuk O, Vereshchagina E, Kooij E S, et al. Physical Review E, 2009, 79(4), 041601.
[1] 刘璐, 王李波, 刘大荣, 胡前库, 周爱国. 二维纳米材料在柔性压阻传感器中的应用研究进展[J]. 材料导报, 2022, 36(4): 20020137-10.
[2] 刘新, 冯攀, 沈叙言, 王浩川, 赵立晓, 穆松, 冉千平, 缪昌文. 水泥水化产物——水化硅酸钙(C-S-H)的研究进展[J]. 材料导报, 2021, 35(9): 9157-9167.
[3] 王永红, 杨倩倩, 刘辰, 刘会斌, 林晨, 肖鹏飞, 巩凌峰. 非金属超疏水纳米涂层技术的研究进展[J]. 材料导报, 2020, 34(Z1): 66-71.
[4] 郑博源, 底月兰, 王海斗, 康嘉杰, 刘韬. 激光加工制备金属基体超疏水表面的研究进展[J]. 材料导报, 2020, 34(23): 23109-23120.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed