Please wait a minute...
材料导报  2021, Vol. 35 Issue (20): 20124-20128    https://doi.org/10.11896/cldb.20080214
  金属与金属基复合材料 |
Al含量对等值锌当量耐磨黄铜组织及性能的影响
王雪松1,2, 周兵1, 戴姣燕2, 徐金富2
1 太原理工大学新型碳材料研究院,太原 030024
2 宁波工程学院材料与化学工程学院,宁波 315211
Effect of Al Content on Microstructure and Properties of Equal Value Zinc Equivalent Wear-resistant Brass
WANG Xuesong1,2, ZHOU Bing1, DAI Jiaoyan2, XU Jinfu2
1 Institute of New Carbon Materials, Taiyuan University of Technology, Taiyuan 030024, China
2 School of Materials and Chemical Engineering, Ningbo Institute of Engineering, Ningbo 315211, China
下载:  全 文 ( PDF ) ( 9400KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究Al含量对耐磨黄铜组织、力学性能及摩擦磨损性能的影响,制备了三种不同Al含量(1.3% Al、2.4% Al、3.6% Al,均为质量分数)等值锌当量的耐磨黄铜合金;利用光学显微镜(OM)、扫描电子显微镜(SEM)、X射线衍射仪(XRD)、拉伸试验机及摩擦磨损试验机对三种耐磨黄铜的组织、力学性能和摩擦磨损性能进行了观察与研究。结果表明,合金的组织为α相、β相、共晶组织强化相及初生强化相,当锌当量不变时,随着Al含量增加,α相区、β相区面积基本相同,共晶组织强化相数量增加,初生强化相数量减少,导致强化相晶粒平均尺寸减小。随着Al含量的增加,合金的硬度、抗拉强度、屈服强度分别提高了31.6%、22.4%、67.3%,延伸率及磨损率分别下降了64.2%及40.8%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王雪松
周兵
戴姣燕
徐金富
关键词:  Al含量  锌当量  耐磨黄铜  组织  性能    
Abstract: In order to study the effect of Al content on the microstructure, mechanical properties and friction and wear properties of wear-resistant brass, three kinds of wear-resisting brass alloys with different Al content (1.3wt% Al, 2.4wt% Al, 3.6wt% Al) and equivalent zinc were prepared. The microstructure, mechanical properties and friction and wear properties of three kinds of wear-resistant brass were observed and studied by optical microscope (OM), scanning electron microscope (SEM), X-ray diffraction (XRD), tensile testing machine and friction and wear testing machine. The results show that the microstructure of the alloy is α phase, β phase, eutectic phase strengthening phase and primary strengthening phase. When the zinc equivalent remains unchanged, α phase and β phase are basically the same with the increase of Al content, the number of eutectic phase strengthening phase increases and the number of primary strengthening phase decreases, resulting in the decrease of the average grain size of the strengthening phase. With the increase of Al content, the hardness、tensile strength and yield strength of the alloy increased by 31.6%, 22.4% and 67.3% respectively, and the elongation and wear rate decreased by 64.2% and 40.8% respectively.
Key words:  Al content    zinc equivalen    wear-resistant brass    microstructure    performance
               出版日期:  2021-10-25      发布日期:  2021-11-12
ZTFLH:  TG146.1  
基金资助: 宁波2025科技重大项目(2019B10084)
通讯作者:  zhoubing@tyut.edu.cn   
作者简介:  王雪松,硕士研究生在读。2018年7月-2019年7月在太原理工大学学习,2019年7月-2020年7月在宁波工程学院联合培养学习,主要从事高性能耐磨铜合金的研究。
周兵,太原理工大学,副教授。2014年获白俄罗斯戈梅利国立大学材料学专业博士学位,同年进入太原理工大学任教,2015年晋升副教授。主要从事功能薄膜材料,超硬涂层材料的研究。已发表学术论文50余篇,其中以第一/通讯作者身份发表SCI收录论文16篇,EI/ISTP收录3篇。
引用本文:    
王雪松, 周兵, 戴姣燕, 徐金富. Al含量对等值锌当量耐磨黄铜组织及性能的影响[J]. 材料导报, 2021, 35(20): 20124-20128.
WANG Xuesong, ZHOU Bing, DAI Jiaoyan, XU Jinfu. Effect of Al Content on Microstructure and Properties of Equal Value Zinc Equivalent Wear-resistant Brass. Materials Reports, 2021, 35(20): 20124-20128.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080214  或          http://www.mater-rep.com/CN/Y2021/V35/I20/20124
1 Wang T. Nonferrous Metals Processing,2006(6),1(in Chinese).
王涛.有色金属加工,2006(6),1.
2 Gu S M, Wang S. Wang T. Yunnan Metallurgy,1999(5),41(in Chinese).
郭淑梅,王硕.云南冶金,1999(5),41.
3 Xu W L, Zhao W, Li B. Journal of Mechanical Transmission,2012(8),132(in Chinese).
徐万里,赵巍,粟斌.机械传动,2012(8),132.
4 Li S N, Chen Y, Ye J W, et al. Journal of Hubei University of Technology,2012(1),114(in Chinese).
李四年,陈园,叶甲旺,等.湖北工业大学学报,2012(1),114.
5 Mysik R K, Sulitsin A V, Brusnitsyn S V. Solid State Phenomena,2017,265,789.
6 Xiao X P, Liu R, Zhang Y, et al. Nonferrous Metals Science and Engineering,2014,(5),92(in Chinese).
肖翔鹏,柳瑞清,张英,等.有色金属科学与工程,2014(5),92.
7 Li D Y, Liu P, Zhang K, et al. Nonferrous Metals Science and Enginee-ring,2017,38(6),311(in Chinese).
李丹阳,刘平,张柯,等.有色金属材料与工程,2017,38(6),311.
8 Li H, Jie J, Liu S, et al. Materials Science and Engineering,2017,704(17),45.
9 Zhang W Q, Wang W B, Xu J F, et al. China Foundry,2019,10(68),1111(in Chinese).
张伟樯,王文波,徐金富,等.铸造,2019,10(68),1111.
10 Chen Y S, Fu Z, Zhu Z Y, et al. Nonferrous Metals Science and Engineering,2012,3(5),23(in Chinese).
陈一胜,傅政,朱志云,等.有色金属科学与工程,2012,3(5),23.
11 Fardoun F, Iyengar S, Melin S. Advanced Materials Research,2011,324,185.
12 Dhaka R S, Banik S, Shukla A K. Physical Review B Condensed Matter,2008,78(7),73107.
13 Stanford N, Bate P S. Acta Materialia,2005,53(3),859.
14 Borggren, Ulrika, and M. Selleby. Journal of Phase Equilibria,2003,24(2),110.
15 Tian R Z, Wang Z T. Copper alloy and its processing manual, Central South University Press, China,2002(in Chinese).
田荣璋,王祝堂.铜合金及其加工手册,中南大学出版社,2002.
16 Li H, Jie J, Zhang P, et al. Metallurgical and Materials Transactions A,2016,47(6),2616.
17 Bouzayeni N, Kchaou M, Elleuch R, et al. Journal of Failure Analysis and Prevention,2013,13(5),584.
18 Zhang X K, Yang X Y. The Chinese Journal of Nonferrous Metals,2016(2),317(in Chinese).
张祥凯,杨续跃.中国有色金属学报,2016(2),317.
19 Pugacheva N B. Metal Science & Heat Treatment,2007,49(1-2),67.
20 Li H. Formation and Growth Mechanisms of [Mn(Fe)]5Si3 Phase and Its Influence on Properties In Complex Manganese Brasses. Ph.D. Thesis, Dalian University of Technology, China,2018(in Chinese).
李航.复杂锰黄铜中[Mn(Fe)]5Si3相形成长大机制及其对性能影响研究.博士学位论文,大连理工大学,2018.
21 Fang W, Fang Q, Chang R B, et al. Materials for Mechanical Enginee-ring,2018,42(7),36(in Chinese).
方伟,方前,常若斌,等.机械工程材料,2018,42(7),36.
22 Chen H, Deng X L, Yang X Y. Journal of Hubei University of Technology,2005,20(1),30(in Chinese).
陈洪,邓雪莲,杨贤镛.湖北工业大学学报,2005,20(1),30.
23 Zhang S H, Zhao X W, Zhan Z Z, et al. Materials for Mechanical Engineering,2004,28(6),35(in Chinese).
张胜华,赵祥伟,占珍珍,等.机械工程材料,2004,28(6),35.
24 Purcek G, Yanar H, Saray O, et al. Wear,2014,311(1-2),149.
25 Waheed A, Ridley N. Journal of Materials Science,1994,29(6),1692.
26 Liao Z k, Liu C L, Gao D D, et al. Journal of Chongqing University of Technology(Natural Science),2015,29(6),41.
廖志康,刘成龙,高丹丹,等.重庆理工大学学报(自然科学版),2015,29(6),41.
[1] 郑健飞, 朱思龙, 聂龙辉. Cu2O/g-C3N4异质结光催化材料的研究进展[J]. 材料导报, 2021, 35(Z1): 33-41.
[2] 韩美旭, 蔡伦, 王小泽, 藏洁, 孙梦宇, 杨涵凝, 秦连杰. 白光LED用氮化物红色荧光粉的研究进展[J]. 材料导报, 2021, 35(Z1): 51-55.
[3] 张明伟, 曲冠达, 庞梦瑶, 刘瑞, 曹贯宇, 李泽, 陈子帅, 刘景顺. 电磁屏蔽机理及涂敷/结构型吸波复合材料研究进展[J]. 材料导报, 2021, 35(Z1): 62-70.
[4] 刘林涛, 张勇, 吕海兵, 何飞. EB-PVD热障涂层粘结层/TGO界面性能的研究进展[J]. 材料导报, 2021, 35(Z1): 160-162.
[5] 刘宝友, 岳新艳, 冯东, 茹红强, 刘春明. 碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 169-171.
[6] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[7] 孙茹茹, 王振, 黄法礼, 易忠来, 袁政成, 谢永江, 李化建. 不同岩性石粉-水泥复合胶凝材料性能研究[J]. 材料导报, 2021, 35(Z1): 211-215.
[8] 张小涛, 李庆超, 李东旭. 碳基材料对水泥基材料性能的影响[J]. 材料导报, 2021, 35(Z1): 220-224.
[9] 周横一, 钱春香, 陈燕强. GRC制品抗泛碱性能的提升及机理[J]. 材料导报, 2021, 35(Z1): 225-231.
[10] 罗遥凌, 高育欣, 闫欣宜, 谢昱昊, 毕耀. 热养护UHPC后期水稳定性[J]. 材料导报, 2021, 35(Z1): 242-246.
[11] 李崇智, 王梦宇, 牛振山. 渗透结晶型表面防护剂对混凝土耐久性的影响[J]. 材料导报, 2021, 35(Z1): 247-250.
[12] 宋云连, 高盼, 吕鹏. 温拌沥青低温性能及其微观特性机理研究[J]. 材料导报, 2021, 35(Z1): 251-257.
[13] 索智, 谭祎天, 谢聪聪. 基于灰度分析的抑尘沥青混合料微宏观性能关联研究[J]. 材料导报, 2021, 35(Z1): 258-263.
[14] 周祥, 赵华堂, 李亮, 杜浪, 周双福, 邵瞾, 张晓敏. Si-Mn矿粉粒度对复合胶凝体系水化机理和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 279-283.
[15] 任万青, 徐掌印, 尹贻光, 祁震. TiFe基储氢材料性能的研究进展[J]. 材料导报, 2021, 35(Z1): 306-310.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed