Please wait a minute...
材料导报  2021, Vol. 35 Issue (15): 15153-15161    https://doi.org/10.11896/cldb.20030213
  金属与金属基复合材料 |
高强高导高耐热铜合金的研究进展与展望
雷前1, 杨一海1, 肖柱2, 姜雁斌2, 龚深2, 李周2
1 中南大学粉末冶金国家重点实验室,长沙 410083
2 中南大学材料科学与工程学院,长沙 410083
Research Progress and Prospect on High Strength, High Conductivity, and High Heat Resistance Copper Alloys
LEI Qian1, YANG Yihai1, XIAO Zhu2, JIANG Yanbin2, GONG Shen2, LI Zhou2
1 State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
2 School of Materials Science and Engineering, Central South University, Changsha 410083, China
下载:  全 文 ( PDF ) ( 1862KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高强高导高耐热铜合金作为现代高新技术用关键材料之一,已被广泛应用于轨道交通、电子通信和导航控制等众多领域。本文以服役温度超过300 ℃的Cu-Ag、Cu-Ni-Si、Cu-Cr-Zr、Cu-Al2O3和Cu-Cr-Nb等高强高导高耐热铜合金为对象,概述了它们的合金设计原则、制备特点和相关物理特性,分析了它们开发应用中所存在的问题,并对它们的发展趋势进行了讨论和展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
雷前
杨一海
肖柱
姜雁斌
龚深
李周
关键词:  高耐热  铜合金  高强高导  时效强化    
Abstract: High strength, high conductivity, and high heat resistant copper alloys are widely used in the fields of rail transit, electronic communications, navigation control, and other fields. In this work, Cu-Ag, Cu-Ni-Si, Cu-Cr-Zr, Cu-Al2O3, and Cu-Cr-Nb alloys with service temperature over 300 ℃ were reviewed. The design principles, preparation characteristics and related physical properties of these alloys were summarized. On this basis, the problems in their development and application were pointed out, and their research trends were analyzed and prospected.
Key words:  high heat resistance    copper alloy    high strength and high conductivity    ageing strengthening
               出版日期:  2021-08-10      发布日期:  2021-08-31
ZTFLH:  TG146  
基金资助: 国家磁约束核聚变能发展研究专项(2018YFE0306100);国家自然科学基金青年项目(51901250);湖南省自然科学基金(2019JJ50765)
作者简介:  雷前,男,博士,副教授,博士研究生导师。2014年毕业于中南大学材料科学与工程学院,2013—2014年德国亚琛工业大学任访问学者,2015—2018年任美国密西根大学博士后研究员,目前任职于粉末冶金国家重点实验室。长期从事高强高导铜合金的相关研究,发表学术论文50余篇,获得国家授权发明专利6项。
李周,男,教授,博士研究生导师,中南大学材料科学与工程学院院长。英国利物浦大学(2009)、新加坡南洋理工大学研究员(2010),德国亚琛工业大学访问学者(2013),“百千万人才工程”国家级人选(2019)。长期从事高强高导铜合金的相关研究,在 Acta Materialia等国内外著名杂志发表论文100余篇,主编专著2部,授权国家发明专利22项。获国家科技进步二等奖1项、省部级科技进步二等奖2项,获国家教学成果二等奖1项,省教学成果一等奖2项。
引用本文:    
雷前, 杨一海, 肖柱, 姜雁斌, 龚深, 李周. 高强高导高耐热铜合金的研究进展与展望[J]. 材料导报, 2021, 35(15): 15153-15161.
LEI Qian, YANG Yihai, XIAO Zhu, JIANG Yanbin, GONG Shen, LI Zhou. Research Progress and Prospect on High Strength, High Conductivity, and High Heat Resistance Copper Alloys. Materials Reports, 2021, 35(15): 15153-15161.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20030213  或          http://www.mater-rep.com/CN/Y2021/V35/I15/15153
1 Wu D Z, Yang W L, Xu H L, et al. Hot Working Technology,2019,48(4),19(in Chinese).
吴德振,杨为良,徐恒雷,等.热加工工艺,2019,48(4),19.
2 Wen G Y. The ageing behavior and mechanical properties of CuAgZr alloy for combustion chamber liner in rocket engine. Master’s Thesis, Harbin Institute of Technology, China,2016(in Chinese).
闻光远.火箭发动机内衬CuAgZr合金时效析出行为及力学性能.硕士学位论文,哈尔滨工业大学,2016.
3 Han K, Vasquez A A, Xin Y, et al. Acta Materialia,2003,51(3),767.
4 Sakai Y, Inoue k, Asano T, et al. Applied Physics Letters,1991,59(2),2965.
5 Krishna S C, Gangwar N K, Jha A K, et al. Journal of Materials Engineering and Performance,2014,23(4),1458.
6 Han K, Embury J D, Sims J R, et al. Materials Science and Engineering: A,1999,267(1),99.
7 Ning Y T, Zhang X H, Zhang J. The Chinese Journal of Nonferrous Me-tals,2005,15(4),506(in Chinese).
宁远涛,张晓辉,张婕.中国有色金属学报,2005,15(4),506.
8 Liu P, Liu X B, Jia S G, et al. Chinese Journal of Rare Metals,2006(1),41(in Chinese).
刘平,刘喜波,贾淑果,等.稀有金属,2006(1),41.
9 Wu X, Wang R C, Peng C Q, et al. Materials Science and Engineering: A,2020,778,139095.
10 Zhang B B, Tao N R, Lu K. Scripta Materialia,2017,129,39.
11 Gaganov A, Freudenberger J, Botcharova E, et al. Materials Science and Engineering: A,2006,437(2),313.
12 Freudenberger J, Lyubimova J, Gaganov A, et al. Materials Science and Engineering: A,2010,527(7),2004.
13 Ning Y T, Zhang X H, Wu Y J. Precious Metals,2008,29(1),19(in Chinese).
宁远涛,张晓辉,吴跃军.贵金属,2008,29(1),19.
14 Liu J B, Zhang L, Meng L. Acta Metallurgica Sinica,2006,42(9),937(in Chinese).
刘嘉斌,张雷,孟亮.金属学报,2006,42(9),937.
15 Sakai Y, Schneider-Muntau H J. Acta Materialia,1997,45(3),1017.
16 Liu J B, Meng L, Zhang L. Rare Metal Materials and Engineering,2005,34(9),1460(in Chinese).
刘嘉斌,孟亮,张雷.稀有金属材料与工程,2005,34(9),1460.
17 Ning Y T, Zhang X H, Wu Y J. Transactions of Nonferrous Metals Society of China,2007,17(2),378.
18 Zhong W S, Sun Y J, Zhang W Q, et al. China Foundry,2001,50(10),611(in Chinese).
仲伟深,孙跃军,张伟强,等.铸造,2001,50(10),611.
19 Wang W. Research on the deformation aging behavior and properties of CuNiSi-(Cr, Zr) alloys. Ph.D. Thesis, Dalian University of Technology, China,2018(in Chinese).
王维.CuNiSi-(Cr,Zr)合金形变时效行为与性能研究.博士学位论文,大连理工大学,2018.
20 Fujiwara H, Sato T, Kamio A. Journal of the Japan Institute of Metals,1998,62(4),301.
21 山本佳纪,佐佐木元,太田真.伸铜技术研究会志,1998,38,204.
22 Cao Y W, Ma J S, Tang X Y, et al. The Chinese Journal of Nonferrous Metals,1999,9(4),723(in Chinese).
曹育文,马莒生,唐祥云,等.中国有色金属学报,1999,9(4),723.
23 Wang S M, Li H, Wang T, et al. Shanghai Nonferrous Metals,1999(2),20(in Chinese).
王世民,李红,王涛,等.上海有色金属,1999(2),20.
24 Li Z, Lei Q, Li S H, et al. Materials Reports A: Review Papers,2015,29(4),1(in Chinese).
李周,雷前,黎三华,等.材料导报:综述篇,2015,29(4),1.
25 Wang H Q. Study on fatigue property and strength improve method of Cu-Ni-Si alloy used in steady clamp of high speed railway catenary. Master’s Thesis, Southwest Jiaotong University, China,2018(in Chinese).
王华强.高速铁路接触网定位线夹用Cu-Ni-Si合金的疲劳性能和强度提高方法研究.硕士学位论文,西南交通大学,2018.
26 Li X L, Yu J M, Yang Z X, et al. Heat Treatment Technology and Equipment,2017,38(4),8(in Chinese).
李小龙,余玖明,杨子萱,等.热处理技术与装备,2017,38(4),8.
27 Liu F, Mi X J, Ma J M, et al. The Chinese Journal of Nonferrous Metals,2019,29(2),286(in Chinese).
刘峰,米绪军,马吉苗,等.中国有色金属学报,2019,29(2),286.
28 Li Y H. Study on aging and thermal deformation behavior of CuNiSi series alloys. Master’s Thesis, Henan University of Science and Technology, China,2008(in Chinese).
李银华.微合金化CuNiSi系合金时效及热变形行为研究.硕士学位论文,河南科技大学,2008.
29 Ryoichi M, Chihiro W. Materials Science and Engineering: A,2008,483,117.
30 Hikaru W, Takahiro K, Chihiro W, et al. Materials Science & Enginee-ring A,2018,730,10.
31 Liao W N, Liu X F, Wang S Q. Journal of Materials Engineering,2019,47(10),44(in Chinese).
廖万能,刘雪峰,王思清.材料工程,2019,47(10),44.
32 Jiang W, Gan W P, Xiang F. Hot Working Technology,2009,38(4),101(in Chinese).
姜伟,甘卫平,向锋.热加工工艺,2009,38(4),101.
33 Zhang M M, Wu Y. Nonferrous Metals Science and Engineering,2012,3(2),12(in Chinese).
张明明,吴语.有色金属科学与工程,2012,3(2),12.
34 Xie C X. Journal of Dongguan University of Technology,2009,16(3),122(in Chinese).
谢春晓.东莞理工学院学报,2009,16(3),122.
35 Lu D P. Study on high-strength and high-conductivity copper alloys. Ph.D. Thesis, Shanghai Jiao Tong University, China,2007(in Chinese).
陆德平.高强高导电铜合金研究.博士学位论文,上海交通大学,2007.
36 Rdzawski Z, Stobrawa J. Materias Science and Technology,1993,9(2),142.
37 Wang L, Sun Y S, Fu X Q, et al. Journal of Southeast University(Natural Science Edition),2005,35(5),729(in Chinese).
汪黎,孙扬善,付小琴,等.东南大学学报(自然科学版),2005,35(5),729.
38 Lei Q. Fundamental research and preparation of an ultrahigh strength, elastic and conductive CuNiSi alloy. Ph.D. Thesis, Central South University, China,2014(in Chinese).
雷前.超高强CuNiSi系弹性导电铜合金制备及相关基础研究.博士学位论文,中南大学,2014.
39 Pan Z Y. Study on microstructure and property of high-strength and high-conductivity Cu-Cr-Zr alloys. Ph.D. Thesis, Shanghai Jiao Tong University, China,2015(in Chinese).
潘振亚.高强高导Cu-Cr-Zr合金组织和性能的研究.博士学位论文,上海交通大学,2015.
40 Sarin V K, Grant N J. Metallurgical Transactions,1972,3(4),875.
41 Zhu C C, Ma A B, Jiang J H, et al. Hot Working Technology,2013,42(2),15(in Chinese).
朱承程,马爱斌,江静华,等.热加工工艺,2013,42(2),15.
42 Zhou H T, Zhong J W, Zhou X, et al. Transactions of Materials and Heat Treatment,2009,30(3),141(in Chinese).
周海涛,钟建伟,周啸,等.材料热处理学报,2009,30(3),141.
43 Wang C D. Research on Metallic Materials,1989,15(1),57(in Chinese).
王成德.金属材料研究,1989,15(1),57.
44 Su J H, Dong Q M, Liu P, et al. Heat Treatment of Metals,2006(8),76(in Chinese).
苏娟华,董企铭,刘平,等.金属热处理,2006(8),76.
45 Wang Y. Microstructure and properties of CuCrZr alloy processed by equal channel angular pressing. Master’s Thesis, Harbin Engineering University, China,2016(in Chinese).
王玉.等径角挤压CuCrZr合金的显微组织与性能研究.硕士学位论文,哈尔滨工程大学,2016.
46 Qi W X. Microstructure and properties of dilute solute Cu-Cr-Zr alloy. Master’s Thesis, Zhejiang University, China,2002(in Chinese).
齐卫笑.低溶质Cu-Cr-Zr合金的微结构与性能.硕士学位论文,浙江大学,2002.
47 Liang N N, Liu J Z, Lin S C, et al. Journal of Alloys and Compounds,2018,735,1389.
48 Peng G Y. Optimizing on component and preparation technology of high-strength and high-conductivity copper alloys. Master’s Thesis, Nanchang University, China,2010(in Chinese).
彭国印.高强高导铜合金的成分与制备工艺优化.硕士学位论文,南昌大学,2010.
49 Zhou H T, Zhong J W, Zhou X. Materials Science and Engineering: A,2008,498(1),225.
50 Li Z W. Study on microstructure and high temperature properties of Cu-Cr alloy. Master’s Thesis, General Research Institute for Nonferrous Metals, China,2018(in Chinese).
李宗武.Cu-Cr系合金组织与高温性能研究.硕士学位论文,北京有色金属研究总院,2018.
51 Wang L, Zheng C, Kombaiah B, et al. Materials Science & Engineering A,2020,779,139110.
52 Yan P, Lin C G, Cui S, et al. Materials Reports A: Review Papers,2011,25(6),101(in Chinese).
燕鹏,林晨光,崔舜,等.材料导报:综述篇,2011,25(6),101.
53 Coolidge W D, Fink C G. Trans AIME,1910,29(2),961.
54 Guo M X, Wang M P, Li Z, et al. Materials for Mechanical Engineering,2005,29(4),1(in Chinese).
郭明星,汪明朴,李周,等.机械工程材料,2005,29(4),1.
55 Yu Y M, Yang G C, Li H L. Powder Metallurgy Technology,2000,18(4),252(in Chinese).
于艳梅,杨根仓,李华伦.粉末冶金技术,2000,18(4),252.
56 Cheng J Y, Wang M P, Li Z, et al. Materials Science & Technology,2005,13(2),127(in Chinese).
程建奕,汪明朴,李周,等.材料科学与工艺,2005,13(2),127.
57 Peng D D, Lu S Q, Gan C L, et al. Heat Treatment of Metals,2020,45(2),29(in Chinese).
彭冬冬,鲁世强,甘春雷,等.金属热处理,2020,45(2),29.
58 Li M X, Luo J, Guo Z M, et al. Materials Reports B: Research Papers,2010,24(1),50(in Chinese).
李美霞,罗骥,郭志猛,等.材料导报:研究篇,2010,24(1),50.
59 Shen Y T, Cui C X, Meng F B, et al. Acta Metallurgica Sinica,1999,35(8),888(in Chinese).
申玉田,崔春翔,孟凡斌,等.金属学报,1999,35(8),888.
60 Yuan Y, Tang W L. Transactions of Materials and Heat Treatment,2020,41(1),33(in Chinese).
袁远,汤文亮.材料热处理学报,2020,41(1),33.
61 Liu G M, Du L F, Yan T, et al. Power Metallurgy Technology,2018,36(3),196(in Chinese).
刘贵民,杜林飞,闫涛,等.粉末冶金技术,2018,36(3),196.
62 Zhang Y F, Ji Z, Jia C C, et al. Journal of Rare Earths,2019,37(5),534.
63 Ding H Y, Fu X L, Dai Q X, et al. Heat Treatment of Metals,2007,32(6),37(in Chinese).
丁红燕,符学龙,戴起勋,等.金属热处理,2007,32(6),37.
64 Chen Y, Tu X Q, Wang L X, et al. Nonferrous Materials and Enginee-ring,2018,39(1),15(in Chinese).
陈渝,屠晓倩,王柳幸,等.有色金属材料与工程,2018,39(1),15.
65 Guo X H, Song K X, Gao J X, et al. Development and Application of Materials,2006,21(4),41(in Chinese).
国秀花,宋克兴,郜建新,等.材料开发与应用,2006,21(4),41.
66 Nadkarni A V. High conductivity copper and aluminum alloys, The Metallurgica of AIME, USA,1984.
67 Xiang Z Q. Investigation on the microstructure and mechanical properties of Cu-2.7%Al2O3 dispersion strengthened copper alloy. Master’s Thesis, Central South University, China, 2014(in Chinese).
向紫琪.Cu-2.7%Al2O3弥散强化铜化铜合金的组织和高温力学性能研究.硕士学位论文,中南大学,2014.
68 Iii H C D G, Eills D L, Loewenthal W S. Journal of Materials Enginee-ring and Performance,2008,17(4),594.
69 Wycliffe P. Literature search on high conductivity copper based alloys, Rockwell International Sci. Center, USA,1984.
70 Tian B H. High performance dispersion reinforced copper matrix composite and its preparation technology, Science Press, China,2011(in Chinese).
田保红.高性能弥散强化铜基复合材料及其制备技术,科学出版社,2011.
71 Zou H F, Xu K H, Zhang Q M, et al. Aeronautical Manufacturing Technology,2015(S2),50(in Chinese).
邹鹤飞,徐坤和,张芹梅,等.航空制造技术,2015(S2),50.
72 Anderson K R, Groza J R, Dreshfield R L, et al. Metallurgical & Materials Transactions A,1995,26(9),2197.
73 Guo X L. The microstructure and properties of the Cu-Cr-Nb alloy with high strength and high electrical conductivity. Master’s Thesis, Central South University, China,2019(in Chinese).
郭晓丽.高强高导Cu-Cr-Zr合金的组织与性能研究.硕士学位论文,中南大学,2019.
74 Walley J L, Heelan J L, Vettraino L G, et al. Materials Science and Engineering: A,2010,527,6956.
75 Lu S Q, Zhou X L, Hu C W. Non-ferrous Mining and Metallurgy,2006,22(S1),61(in Chinese).
鲁世强,周细林,胡春文.有色矿冶,2006,22(S1),61.
76 Li W Y, Guo X P, Verdy C, et al. Scripta Materialia,2006,55,327.
77 Decker M W, Groza J R, Gibeling J C. Materials Science and Enginee-ring A, Structural Materials,2004,369(1-2),101.
78 Vettraino L G, Heelan J L, Faconti C A, et al. Journal of Materials Science,2008,43,6546.
79 Walley J L, Heelan J L, Vettraino L G, et al. Materials Science & Engineering A,2010,527(26),6956.
80 Vettraino L G, Zhang M, Carter J L W, et al. Materials Science and Engineering A,2019,756(22),538.
81 Ellis D L, William S L, Hee M Y. Tensile properties of GRCop-84, NASA, USA,2012.
82 Ellis D L, Dreshfield R L, Verrilli M J, et al. In: Earth-to-Orbit Confe-rence. Huntsville, AL, USA,1994,pp. 32.
83 Ellis D L, Bradley A. Improvement of GRCop-84 through the addition of zirconium, NASA, USA,2012.
84 Yang Y, Ling W, Snead L, et al. Materials & Design,2018,156,370.
85 Anderson K R, Groza J R. Metallurgical and Materials Transaction A,2011,32,1211.
86 Ellis D L. Mechanical properties of Cu-Cr-Nb alloys, NASA, USA,1997.
87 Anderson K R. Effects of thermal and mechanical processing on microstructures and desired properties of particle-strengthened Cu-Cr-Nb alloys. Ph.D. Thesis, University of California, Davis, USA,1999.
88 Butler D T J, Pindera M J. Analysis of factors affecting the performance of RLV thrust cell liners, NASA, USA,2004.
89 Stephens J J, Schmale D T. The effect of high temperature braze thermal cycles on mechanical properties of a dispersion strengthened copper alloy, Sandia National Labs., USA,1987.
90 Nathal M V, Ellis D L, Loewenthal W S, et al. In: JANNAF 39th CS/27th APS/21st PSHS/3rd MSS Subcommittee Joint Meeting. Colorado Springs,2003,pp. 2003-0390cc.
91 Conway J B, Stentz R H, Berling J T. High temperature, low cycle fatigue of copper-base alloys in argon; part I-preliminary results for 12 alloys at 1 000 °F (538 ℃), NASA, USA,1973.
92 Horn D D, Lewis H F. Property investigation of copper base alloys at am-bient and elevated temperatures, NASA, USA,1965.
93 Conway J B, Stentz R H, Berling J T. High-temperature, low-cycle fatigue of copper-base alloys for rocket nozzles, part II-strainrange partitioning and low-cycle fatigue results at 538 ℃, NASA, USA,1976.
94 Hannum N P, Kasper H J, Pavli A J. In: AIAA/SAE 12th Propulsion Conf. Palo Alto, CA, USA,1976,pp. 76.
95 Esposito J J, Zabora R F. Thrust chamber life prediction-vol. I-mechanical and physical properties of high performance rocket nozzle materials, NASA, USA,1975.
96 Dalder E N C, Ludemann W, Schumacher B. In: DOE workshop on copper alloys and copper alloys for fusion reactor applications. Washington, DC, USA,1983,pp. 251.
97 Stephens J J, Bourcier R J, Vigil F J, et al. Mechanical properties of dispersion strengthened copper: a comparison of braze cycle annealed and coarse grain microstructure, Sandia National Labs., Albuquerque, NM, USA,1988.
98 Cubberli W H. Properties and selection: nonferrous alloys and pure metals, ASM international, USA,1979.
99 Correia J B, Davies H A, Sellars C M. Acta Materialia,1997,45(1),177.
100 Nguyentat T, Gibson V A, Horn R M. In: 27th Joint Prop. Conf. Sacramento, CA, USA,1991,pp. 91.
101 Ellis D L. GRCop-84: A high-temperature copper alloy for high-heat-flux application, NASA, USA, 2005.
[1] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[2] 黄柯,赵阳,张昌松,王晓明,常青,邱六,关雪飞. PREP法制备球形CuAl10Fe3铜合金粉末的性能表征[J]. 材料导报, 2019, 33(22): 3783-3788.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed