Please wait a minute...
材料导报  2021, Vol. 35 Issue (2): 2052-2056    https://doi.org/10.11896/cldb.19120125
  无机非金属及其复合材料 |
宏纳观多尺度集料-沥青粘附性评价
虞将苗, 周文理
华南理工大学土木与交通学院,广州 510640
Evaluation of Adhesion Between Aggregate and Asphalt Binder in Multi-scale
YU Jiangmiao, ZHOU Wenli
School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, China
下载:  全 文 ( PDF ) ( 3357KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 集料-沥青的粘附性能作为沥青混合料路用性能的重要指标之一,对道路的耐久性有着重要影响。集料-沥青粘附性受多种因素共同影响。为探究集料的内在成分对集料-沥青粘附性的影响,对原子力显微镜(AFM)的探针针尖进行改造和修饰。采用道路工程在建项目附属石场的集料,提取集料中主要化合物成分制成小球针尖并对沥青表面进行粘附力测定;同时,结合荧光光谱仪(XRF)分析与拉拔试验,探究集料成分对集料-沥青粘附性的影响,并进行综合评价。结果表明,沥青-集料的粘附作用包括物理吸附和化学吸附,Al2O3在宏纳观尺度与沥青都有着较大的粘附作用;纳观尺度测定的结果表明,SiO2与沥青之间有着较强的粘附力,而CaCO3与沥青之间的粘附力较弱。宏观尺度测定结果表明,化学吸附对集料-沥青的粘附作用有着更强的影响,且碱性集料与沥青之间有着较强的抗水损害能力。本工作针对道路工程集料筛选给出了基于粘附性评价的建议,具有一定的指导意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
虞将苗
周文理
关键词:  沥青  原子力探针显微镜(AFM)  粘附力  拉拔试验    
Abstract: The adhesion force between aggregate and asphalt binder is one of the important indicators of asphalt mixture performance, which has important effect on the durability of the road. The adhesion force between aggregate is influenced by many factors. In order to investigate the inf-luence of the inherent components of the aggregate on the adhesion force between aggregate and asphalt binder, the probe tip of the atomic force microscope (AFM) was modified: use the main compounds in aggregate to make small ball probe tips so as to measure the adhesion of the asphalt surface. Obtaining aggregates from the quarry attached to the road engineering project under construction, combined with X-ray fluorescence spectrometer (XRF) analysis and macro MTS pull-out test to investigate the effect of aggregate composition on aggregate-asphalt adhesion and conduct a comprehensive evaluation. The conclusion indicates that the adhesion between aggregate and asphalt binder includes physical adsorption and chemical adsorption. Large adhesion force occurs between Al2O3 and asphalt binder, the results measured at the nano level show that there is a strong intermolecular attraction between SiO2 and asphalt binder, while the intermolecular attraction between CaCO3 and asphalt binder is weak. The macro-level measurement results show that chemisorption has a stronger effect on the adhesion between aggregate and asphalt binder and the alkaline aggregate combined with asphalt binder have a stronger ability to resist water damage. The result has certain guiding significance of aggregate screening in road engineering.
Key words:  asphalt    AFM    adhesion    pull-out test
               出版日期:  2021-01-25      发布日期:  2021-01-28
ZTFLH:  U414  
基金资助: 国家自然科学基金(51678251)
通讯作者:  yujm@scut.edu.cn   
作者简介:  虞将苗,工学博士,华南理工大学土木与交通学院教授、博士研究生导师,道路工程系系主任。美国加州大学伯克利分校(UC Berkeley)路面研究中心国家公派访问学者。重点研究方向为高性能沥青与沥青混合料、新型路面结构与材料、现代道路养护与管理技术等。发表学术论文50余篇;申请并授权国家发明和实用新型专利50余项。
引用本文:    
虞将苗, 周文理. 宏纳观多尺度集料-沥青粘附性评价[J]. 材料导报, 2021, 35(2): 2052-2056.
YU Jiangmiao, ZHOU Wenli. Evaluation of Adhesion Between Aggregate and Asphalt Binder in Multi-scale. Materials Reports, 2021, 35(2): 2052-2056.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19120125  或          http://www.mater-rep.com/CN/Y2021/V35/I2/2052
1 Wang X D. Study on the influence of aggregate lithology and micro characteristics on the road performance of asphalt mixtures. Master's Thesis, Jilin University, China, 2011(in Chinese).
王旭东. 集料岩性及微观特征对沥青混合料路用性能的影响研究. 硕士学位论文, 吉林大学, 2014.
2 Zhang C X, Chen H X, Li Y, et al. Materials Reports, 2013, 27(S2),293(in Chinese).
张晨旭, 陈华鑫, 李毅, 等. 材料导报, 2013, 27(专辑22),293.
3 Wang D Y, Wang P. Highway Engineering, 2017, 42(6),69(in Chinese).
王端宜, 王鹏. 公路工程, 2017, 42 (6),69.
4 Binning G, Quate C F. Gerber C. Physical Review Letters,1986, 56(9),930.
5 Gaskin J. On bitumen microstructure and the effects of crack healing. Ph.D. Thesis, University of Nottingham, UK, 2013.
6 Liu K F, Deng L F, Zhen J Y, et al. Chinese Journal of Materials Research, 2016, 30(10),773(in Chinese).
刘克非, 邓林飞, 郑佳宇, 等. 材料研究学报, 2016, 30(10),773.
7 Wu Z H, Chen J, Fu Q S, et al. Materials Reports A: Review Papers, 2013, 28(8),62(in Chinese).
吴召洪, 陈建, 附青山, 等. 材料导报: 综述篇, 2014, 28(8),62.
8 Li Y J, Yang J, Tan T. Construction and Building Materials, 2015, 101,159.
9 Rafiqul A, Tarefder, ASCE M, et al. Journal of Materials in Civil Engineering, 2010, 22(7),714.
10 Lv X B, Fan W Y, Wang J Q, et al. Construction and Building Mate-rials, 2019, 207,422.
11 Lyne A L, Wallqvist V, Birgisson B. Fuel,2013, 113,248.
12 Chen A Q, Liu G Q, Zhao Y L, et al. Construction and Building Mate-rials, 2018, 167,177.
13 Pei Z S. Analysis of microscopic characteristics and influencing factors of aging asphalt surface based on AFM. Master's Thesis, Harbin Institute of Technology, China, 2016(in Chinese).
裴忠实. 基于AFM的老化沥青表面微观特征及影响因素分析. 硕士学位论文, 哈尔滨工业大学, 2016.
14 Huang S C, Robertson R E. Road Materials and Pavement Design, 2006,7(2),179.
15 Wang W N, Xu Q J, Zhou S X, et al. Materials Reports A: Review Papers, 2019, 33(7),2197(in Chinese).
王威娜, 徐青杰, 周圣雄, 等. 材料导报: 综述篇, 2019, 33(7),2197.
16 Zhang C. Experimental study on shear mechanical properties of asphalt-aggregate interface. Master's Thesis, Hefei University of Technology, China, 2017(in Chinese).
张超. 沥青-集料界面剪切力学性能试验研究. 硕士学位论文, 合肥工业大学, 2017.
17 Song L, An C F, Huang M. Journal of Building Materials, 2019, 22(3),440(in Chinese).
宋亮,安传峰,黄美. 建筑材料学报, 2019, 22(3),440.
18 Fischer H, Stadler H, Erina N. Journal of Microscopy, 2013, 250(3),210.
19 Yu X K, Burnham N A, et al. Fuel, 2013, 113,443.
20 Xie S N. Research on asphalt structure and adhesion properties of asphalt surface at normal temperature. Master's Thesis, Harbin Institute of Technology, China, 2017(in Chinese).
解赛楠. 常温域沥青表面纳观构造及粘附特性研究. 硕士学位论文, 哈尔滨工业大学, 2017.
21 Xu M, Yi J, Feng D, Huang Y, et al. Applied Materials & Interfaces, 2016, 8(19),12393.
22 Fan X H, Xue Z H. Bulletin of the Chinese Ceramic Society, 2019, 38(5),1477(in Chinese).
樊兴华, 薛振华. 硅酸盐通报, 2019, 38(5),1477.
23 Chen S, Lei Y, Li G, et al. Journal of China & Foreign Highway, 2010, 30(6),226(in Chinese).
陈实,雷宇,李刚,等. 中外公路, 2010, 30(6),226.
24 Gong X B. Unified model of asphalt pavement material and mechanical behavior in multi-scale domain. Ph.D. Thesis, Harbin Institute of Technology, China, 2017(in Chinese).
龚湘兵. 沥青路面材料多尺度域力学行为及统一模型. 博士学位论文, 哈尔滨工业大学, 2017.
25 Pang X X. Analysis of asphalt and aggregate adhesion based on AFM and surface energy principles. Master's Thesis, Harbin Institute of Technology, China, 2015(in Chinese).
庞骁奕. 基于AFM与表面能原理的沥青与集料粘附特性分析. 硕士学位论文, 哈尔滨工业大学, 2015.
26 Zhou W F. Study on asphalt and aggregate interface adhesion, Master's Thesis, Chang'an University, China, 2002(in Chinese).
周卫峰. 沥青与集料界面粘附性研究. 硕士学位论文, 长安大学, 2002.
27 Amir M. Ali K. Construction and building material, 2013, 38,423.
28 Little D N, Jones D R. In: National Seminar in Moisture Sensitivity. California,2003,pp.37.
29 Qin C L. In: Conference Record of the 2019 World Transport Convention. Beijing, 2019,pp.1382(in Chinese).
秦成林. 2019世界交通运输大会论文集. 北京,2019,pp.1382.
30 Robertson R E. Transportation Research Circular, 2000, 499,38.
[1] 赵毅, 秦旻, 文凯琪, 梁乃兴, 王亚茹. 沥青路面超疏水抗凝冰材料研究进展[J]. 材料导报, 2021, 35(1): 1141-1153.
[2] 侯德华, 张庆, 韩志宇, 张芳超. 基于主成分分析法的乳化沥青残留物综合性能评价[J]. 材料导报, 2020, 34(Z2): 278-282.
[3] 柴金玲, 栗威. 基于GTM的沥青混合料配合比设计方法试验研究[J]. 材料导报, 2020, 34(Z2): 283-287.
[4] 成志强, 张晓燕, 孔繁盛, 郭鹏. 利用表面能理论及拉脱试验分析沥青膜的剥离行为[J]. 材料导报, 2020, 34(Z2): 288-294.
[5] 张庆, 侯德华, 刘廷国. 水固化型聚合物改性乳化沥青混合料性能研究[J]. 材料导报, 2020, 34(Z2): 612-617.
[6] 李旭阳, 索智, 罗亮. 温拌沥青混合料在生产阶段的节能减排量化分析[J]. 材料导报, 2020, 34(Z1): 209-212.
[7] 刘家文, 王冲, 熊光启. 可再分散沥青粉与纳米SiO2复合制备刚性自防水混凝土的研究[J]. 材料导报, 2020, 34(8): 8090-8095.
[8] 汪德才, 郝培文, 乐金朝, 孙杨, 张庆. 冷再生用乳化沥青残留物的流变特性[J]. 材料导报, 2020, 34(6): 6081-6087.
[9] 张帅, 张健. 冷冻干燥法制备有机蒙脱土及其改性沥青性能研究[J]. 材料导报, 2020, 34(4): 4037-4042.
[10] 赵毅, 杨旋, 郝增恒, 梁乃兴, 田于锋. 沥青混合料均匀性数字图像评价方法研究进展[J]. 材料导报, 2020, 34(23): 23088-23099.
[11] 吴玲玲, 任其亮, 罗莉. 公路沥青混凝土路面材料高温稳定性研究[J]. 材料导报, 2020, 34(22): 22083-22086.
[12] 朱旭伟, 李波, 魏定邦, 文卫军, 周家宁. 循环堵塞-清洗对多孔沥青混合料渗水性能的影响[J]. 材料导报, 2020, 34(20): 20040-20045.
[13] 宋国林, 张泽, 沈成柱, 范鑫, 谢俊伟, 唐国翌. 低温等离子体改性碳纳米管对再生沥青性能的影响[J]. 材料导报, 2020, 34(2): 2052-2057.
[14] 何亮, 李冠男, 郑雨丰, Alessio Alexiadis, Jan Valentin, Karol J Kowalski. 沥青体系的分子动力学研究进展及展望[J]. 材料导报, 2020, 34(19): 19083-19093.
[15] 辛雪, 苏林萍, 梁 明, 姚占勇, 范维玉, 南国枝, 张吉哲. 废胶粉改性制备高模量沥青及其动态力学性能[J]. 材料导报, 2020, 34(18): 18060-18064.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed