Please wait a minute...
材料导报  2020, Vol. 34 Issue (15): 15174-15183    https://doi.org/10.11896/cldb.19060033
  高分子与聚合物基复合材料 |
基于探针标记的免疫层析试纸及其应用
丁金姿, 冯爱玲, 徐榕, 王彦妮, 李晓东
宝鸡文理学院物理与光电技术学院,宝鸡 721016
Immunochromatographic Test Strips Based on Probe Labels and Their Application
DING Jinzi, FENG Ailing, XU Rong, WANG Yanni, LI Xiaodong
School of Physics and Optoelectronics Technology, Baoji University of Arts & Sciences, Baoji 721016, China
下载:  全 文 ( PDF ) ( 3890KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 免疫层析试纸(ICTSs)是基于免疫层析检测技术发展起来的一种新型检测试纸。ICTSs将免疫技术的高度特异性和层析法优越的分离能力进行了有效结合,具有携带便利、测试所耗时间较短、测试结果相对稳定、价格便宜等诸多优点,目前普遍应用于各种生物分子、化学污染物和侵染因子的检测。
近些年,由于ICTSs的灵敏度、检测限度和特异性低等缺点,使其发展受到了很大的限制。而影响试纸性能的主要因素为用作探针的标记物。为了提高试纸的性能,研究者们主要从两个方面进行探究:(1)通过向试纸上添加增强剂,进行信号放大等;(2)除了常用的胶体金、量子点和乳胶颗粒之外,尝试使用上转换荧光颗粒、碳纳米颗粒、脂质体、磁性纳米颗粒以及纳米硒等新型标记物来提高试纸性能。目前,这两方面的研究均取得了丰硕的成果。其中胶体金作为ICTSs最常用的探针之一,虽然其检测范围广、操作方便、快捷、特异性强,但其灵敏度较低。通过在胶体金ICTSs上添加增强剂(即HAuCl4和NH2OH·HCl)可以明显提高其检测限度和灵敏度。在相同的生物条件下进行分析时,用作ICTSs的上转换荧光颗粒与胶体金或彩色乳胶珠相比,也可以将检测的灵敏度提高10~100倍;此外,纳米硒颗粒由于具有良好的生物相容性且成本较低,作为ICTSs免疫探针的研究和开发具有广阔的前景。
本文介绍了ICTSs的基本结构和两种检测方法(竞争型和三明治型),并对近些年关于ICTSs的不同设计(同一试纸增加多条检测线;不同形状的试纸以及微阵列试纸芯片等)进行了阐述。从不同探针标记物对ICTSs的影响入手,重点介绍了几种近年来研究较为广泛的标记物,分析了不同标记物的优缺点以及应用现状。最后综述了ICTSs在人类医学疾病、农业生产和食品安全等领域的应用,并指出今后的研究重点应放在进一步深入探索复合探针的研究上,以满足在检测领域所追求的“快速、便捷、特异、灵敏”的目标。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁金姿
冯爱玲
徐榕
王彦妮
李晓东
关键词:  免疫层析试纸  硝酸纤维素膜  标记物  探针    
Abstract: Immunochromatographic test strips (ICTSs) are a new type oftest strips based on immunochromatographic detection technology.Because of the combination of the high specificity of immunotechnology with the superior separation ability of chromatography, ICTSs have many advantages, such as portability, less time-consuming, relatively stable test results, low price and so on. At present, ICTSs are widely used in the detection of various biological molecules, chemical pollutants and infection factors.
In recent years, the development of ICTSs has been greatly limited due to its low sensitivity, detection limit and specificity.The factor that primarily affects the performance of the test strips is the label used as a probe.In order to improve the performance of the test strips, researchers mainly explored two aspects: (ⅰ) signal amplification by adding enhancers to the test strips; (ⅱ) in addition to the commonly used colloidal gold, quantum dots and latex particles, new labels such as upconverting fluorescent particles, carbon nanoparticles, liposomes, magnetic nano-particles, and selenium nanoparticles to improve test strips performance were studied.
At present, fruitful results have been achieved through these studies.Colloidal gold is one of the most commonly used probes in ICTSs. Although it has a wide detection range, convenient operation, speed and strong specificity, its sensitivity is low.In recent years, the detection limit and sensitivity have been significantly improved by adding enhancers (such as HAuCl4 and NH2OH·HCl) to colloidal gold ICTSs.Compared with colloidal gold or colour latex particles, the sensitivity of upconverting fluorescent particles for ICTSs can also be increased by 10—100 times under the same biological conditions.In addition, selenium nanoparticles have good biocompatibility and low cost, so the research and development of selenium nanoparticles as ICTSs immunoprobe has broad prospects.
This review describes the basic structure of ICTSs and two detection methods: competitive format and sandwich format,and the different designs of ICTSs in recent years (adding multiple test lines to the same test strips, different shape test strips and lateral flow microarray).Based on the influence of different probe labels on ICTSs, several widely studied labels have been introduced in recent years, the advantages and disadvantages of different labels and their application status are analyzed. Finally, we review the applications of ICTSs in human medical diseases, agricultural production and food safety. In the future, the emphasis should be put on exploring composite probes in order to meet the goal of “fast, convenient, specific and sensitive” in the field of detection.
Key words:  immunochromatographic test strips    nitrocellulose membrane    label    probe
               出版日期:  2020-08-10      发布日期:  2020-07-14
ZTFLH:  O652  
基金资助: 国家自然科学基金(51801001);陕西省重点研发计划(2019GY-197);陕西省自然科学基础研究计划(2015JM5215);中国博士后科学基金面上项目(2016M601878);宝鸡市科技计划项目(16RKX1-29);陕西省千人计划青年项目
通讯作者:  ailing@mail.xjtu.edu.cn   
作者简介:  丁金姿,2018年毕业于宝鸡文理学院物理与光电技术学院,获得工学学士学位,现在为宝鸡文理学院光学工程专业硕士研究生,在冯爱玲导师的指导下进行研究工作。目前主要研究方向为生物传感器。
冯爱玲,博士,教授,硕士研究生导师,首批陕西省青年“千人计划”入选者,首批宝鸡文理学院 “横渠学者”入选者。2002年7月本科毕业于长安大学应用化学专业,2005年7月硕士毕业于第四军医大学药物化学专业,2011年于西安交通大学材料科学与工程专业取得博士学位,2012-2015年在西安交通大学进行博士后研究工作,2016—2018年于美国圣路易斯华盛顿大学访学。研究方向主要包括:镁基复合材料的制备及骨组织植入应用、纳米羟基磷灰石纤维的生长机制;稀土上转换材料的可控合成及荧光增强机理研究;新型微纳高导热高介电绝缘复合材料的设计与研究。以第一作者或通信作者在国内外学术期刊上发表论文20余篇,总被引970余次(Google学术引用)。发表的学术论文有8篇入选ESI数据库高被引论文,其中2篇入选ESI数据库热点论文。申请国家发明专利 8项(其中授权 4 项)。主持国家自然科学基金青年项目1项,主持陕西省重点研发计划1项,主持其他省厅级及市级科研项目等8项,作为骨干成员参与了国家重大仪器开发专项1项,自然科学基金委重大国际(地区)合作研究项目1项。以第一获奖人获得陕西省自然科学优秀学术论文奖1项。
引用本文:    
丁金姿, 冯爱玲, 徐榕, 王彦妮, 李晓东. 基于探针标记的免疫层析试纸及其应用[J]. 材料导报, 2020, 34(15): 15174-15183.
DING Jinzi, FENG Ailing, XU Rong, WANG Yanni, LI Xiaodong. Immunochromatographic Test Strips Based on Probe Labels and Their Application. Materials Reports, 2020, 34(15): 15174-15183.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19060033  或          http://www.mater-rep.com/CN/Y2020/V34/I15/15174
1 Anfossi L, Di Nardo F, Cavalera S, et al. Biosensors, 2019, 9(1), 2.2 De Saeger S, Van Peteghem C. Applied and Environmental Microbiology, 1996, 62(6), 1880.3 Sajid M, Kawde A N, Daud M. Journal of Saudi Chemical Society, 2015, 19(6), 689.4 Zhang G, Guo J, Wang X. Immunochromatographic lateral flow strip tests, Humana Press, USA, 2009, pp. 169.5 Ngom B, Guo Y, Wang X, et al. Analytical and Bioanalytical Chemistry, 2010, 397(3), 1113.6 Zhang G P. Immunochromatographic lateral flow strip test, Henan Science and Technology Press, China, 2015(in Chinese).张改平. 免疫层析试纸快速检测技术, 河南科学技术出版社, 2015.7 Wang X, Li K, Shi D, et al. Journal of Agricultural and Food Chemistry, 2007, 55(6), 2072.8 Liu C, Jia Q, Yang C, et al. Analytical Chemistry, 2011, 83(17), 6778.9 Peng F, Wang Z, Zhang S, et al.Clinical and Vaccine Immunology, 2008, 15(3), 569.10 Peng D P, Hu S S, Hua Y, et al. Veterinary Immunology and Immunopathology, 2007, 117(1-2), 17.11 Qian S, Bau H H. Analytical Biochemistry, 2004, 326(2), 211.12 Tighe P J, Ryder R R, Todd I, et al. Proteomics-Clinical Applications, 2015, 9(3-4), 406.13 Safenkova I V, Pankratova G K, Zaitsev I A, et al. Analytical and Bioa-nalytical Chemistry, 2016, 408(22), 6009.14 Song S, Liu N, Zhao Z, et al. Analytical Chemistry, 2014, 86(10), 4995.15 Xu Y, Liu Y, Wu Y, et al. Analytical Chemistry, 2014, 86(12), 5611.16 Corstjens P L, Claudia J, van der Ploeg-van J J, et al. Clinical Bioche-mistry, 2011, 44(14-15), 1241.17 Martinez A W, Phillips S T, Butte M J, et al. Angewandte Chemie International Edition, 2007, 46(8), 1318.18 Fenton E M, Mascarenas M R, López G P, et al. ACS Applied Materials and Interfaces, 2008, 1(1), 124.19 Gantelius J, Hamsten C, Neiman M, et al. Journal of Microbiological Methods, 2010, 82(1), 11.20 Zou Z X. Biosensor based on immunochromatographic test strips and its application in rapid and highly sensitive screening biomarkers. Doctor's Thesis, Xiamen University, China, 2011(in Chinese).邹哲祥. 基于免疫层析试纸条的生物传感器及其在快速高灵敏筛查生物标志物中的应用. 博士学位论文, 厦门大学, 2011.21 Wu F B, Ho H R, He Y F, et al. Chinese Journal of Laboratory Medicine, 1998, 21(2), 122(in Chinese).吴冯波, 侯慧仁, 贺佑丰, 等. 中华检验医学杂志, 1998, 21(2), 122.22 Mayhew T M, Mühlfeld C, Vanhecke D, et al. Annals of Anatomy-anatomischer Anzeiger, 2009, 191(2), 153.23 Horisberger M, Rosset J. Journal of Histochemistry and Cytochemistry, 1977, 25(4), 295.24 Huang C C, Chiang C K, Lin Z H, et al. Analytical Chemistry, 2008, 80(5), 1497.25 Delmulle B S, De Saeger S M, Sibanda L, et al. Journal of Agricultural and Food Chemistry, 2005, 53(9), 3364.26 Jennings T, Strouse G. Past, present, and future of gold nanoparticles, Springer, UK, 2007, pp. 34.27 Li J, Zou M, Chen Y, et al. Analytica Chimica Acta, 2013, 782, 54.28 Mei Z, Qu W, Deng Y, et al. Biosensors and Bioelectronics, 2013, 49, 457.29 Greenwald R, Esfandiari J, Lesellier S, et al. Diagnostic Microbiology and Infectious Disease, 2003, 46(3), 197.30 Chun P. Colloidal gold and other labels for lateral flow immunoassays, Humana Press, USA, 2009.31 Hong W, Huang L, Wang H, et al.Journal of Microbiological Methods, 2010, 83(2), 133.32 Xu R, Feng A L, Wang Y N, et al. Chemistry, 2018, 81(12), 1059 (in Chinese).徐榕, 冯爱玲, 王彦妮, 等. 化学通报, 2018, 81(12), 1059.33 Qu Q, Zhu Z, Wang Y, et al. Journal of Microbiological Methods, 2009, 79(1), 121.34 Li L, Zhou L, Yu Y, et al. Diagnostic Microbiology and Infectious Disease, 2009, 63(2), 165.35 Gong X, Cai J, Zhang B, et al. Journal of Materials Chemistry B, 2017, 5(26), 5079.36 Corstjens P, Zuiderwijk M, Brink A, et al. Clinical Chemistry, 2001, 47(10), 1885.37 Mokkapati V K, Sam N R, Kardos K, et al. Annals of the New York Academy of Sciences, 2007, 1098(1), 476.38 Van Dam G J, Wichers J H, Ferreira T M, et al. Journal of Clinical Microbiology, 2004, 42(12), 5458.39 Hampl J, Hall M, Mufti N A, et al. Analytical Biochemistry, 2001, 288(2), 176.40 Zhao Y, Wang H, Zhang P, et al. Scientific Reports, 2016, 6, 21342.41 Foubert A, Beloglazova N V, Gordienko A, et al. Journal of Agricultural and Food Chemistry, 2016, 65(33), 7121.42 Li X, Lu D, Sheng Z, et al. Talanta, 2012, 100, 1.43 Bai Y, Tian C, Wei X, et al. RSC Advances, 2012, 2(5), 1778.44 Ren M, Xu H, Huang X, et al. ACS Applied Materials and Interfaces, 2014, 6(16), 14215.45 Zheng Y, Yang Z, Ying J Y. Advanced Materials, 2007, 19(11), 1475.46 Mamedova N N, Kotov N A, Rogach A L, et al. Nano Letters, 2001, 1(6), 281.47 Yang D Z, Sun S A, Chen Q F, et al. Acta Laser Biology Sinica, 2007,(5), 527 (in Chinese).杨冬芝, 孙世安, 陈启凡, 等.激光生物学报, 2007(5), 527.48 Huang X, Aguilar Z P, Xu H, et al. Biosensors and Bioelectronics, 2016, 75, 166.49 Quesada-González D, Merkoçi A. Biosensors & Bioelectronics, 2015, 73(2), 47.50 Gordon J, Michel G. Clinical Chemistry, 2008, 54(7), 1250.51 Jia X, Song T, Liu Y, et al. Analytica Chimica Acta, 2017, 969, 57.52 Xie X Q. Journal of Food Safety & Quality, 2014, 5(7), 2138(in Chinese).谢雪钦. 食品安全质量检测学报, 2014, 5(7), 2138.53 Baeumner A J, Pretz J, Fang S. Analytical Chemistry, 2004, 76(4), 888.54 Edwards K A, Baeumner A J. Analytical Chemistry, 2006, 78(6), 1958.55 Ho J A A, Zeng S C, Tseng W H, et al. Analytical and Bioanalytical Chemistry, 2008, 391(2), 479.56 Ren W, Ballou D R, Fitzgerald R, et al. Biosensors and Bioelectronics, 2019, 126, 324.57 Nor N M, Razak K A, Tan S C, et al. Journal of Alloys and Compounds, 2012, 538, 100.58 Wang Y, Xu H, Wei M, et al. Materials Science and Engineering: C, 2009, 29(3), 714.59 Jiles D C. Acta Materialia, 2003, 51(19), 5907.60 Tang D, Sauceda J, Lin Z, et al. Biosensors and Bioelectronics, 2009, 25(2), 514.61 Yin H Y, Fang T J, Li Y T, et al. Food Chemistry, 2019, 271, 505.62 Hong W Y, Yang R F, Tang B H. Medical Recapitulate, 2011, 17(13), 2017(in Chinese).洪文艳, 杨瑞馥, 唐博恒. 医学综述, 2011, 17(13), 2017.63 Zhou W, Gao X, Liu D, et al. Chemical Reviews, 2015, 115(19), 10575.64 Wang Z, Jing J, Ren Y, et al.Materials Letters, 2019, 234, 212.65 Osikowicz G, Beggs M, Brookhart P, et al. Clinical Chemistry, 1990, 36(9), 1586.66 Xu R, Feng J, Hong Y, et al. Infectious Diseases of Poverty, 2017, 6(1), 84.67 Horiuchi M, Mogi M. Hypertension, 2011, 57(4), 672.68 Ablij H, Meinders A. European Journal of Internal Medicine, 2002, 13(7), 412.69 Clyne B, Olshaker J. The Journal of Emergency Medicine, 1999, 17(6), 1019.70 Oh J, Joung H A, Han H S, et al. Theranostics, 2018, 8(12), 3189.71 Kim S J, Gobi K V, Tanaka H, et al. Sensors and Actuators B: Chemical, 2008, 130(1), 281.72 Roy D. Journal of Environmental Health, 2001, 64(3), 17.73 Watanabe E, Kanzaki Y, Tokumoto H, et al. Journal of Agricultural and Food Chemistry, 2002, 50(1), 53.74 Yu J, Guo T, Zhang W, et al. Journal of Alloys and Compounds, 2019, 771, 187.75 Anfossi L, Giovannoli C, Baggiani C. Current Opinion in Biotechnology, 2016, 37, 120.76 Pestka J J. Animal Feed Science and Technology, 2007, 137(3-4), 283.77 Li Y, Wang Z, Beier R C, et al. Journal of Agricultural and Food Che-mistry, 2011, 59(8), 3441.78 Shim W B, Kim K Y, Chung D H. Journal of Agricultural and Food Chemistry, 2009, 57(10), 4035.79 Chen Y, Chen Q, Han M, et al. Food Chemistry, 2016, 213, 478.80 Kong D, Liu L, Song S, et al. Nanoscale, 2016, 8(9), 5245.81 Li X, Li P, Zhang Q, et al. Biosensors and Bioelectronics, 2013, 49, 426.82 Zhang X, Yu X, Wen K, et al. Journal of Agricultural and Food Chemistry, 2017, 65(36), 8063.83 Feng J, Sun M, Bu Y, et al. Analytical and Bioanalytical Chemistry, 2016, 408(6), 1679.84 Maganhin C C, Simões R S, Fuchs L F, et al. Acta Cirurgica Brasileira, 2009, 24(4), 321.85 Yang X, Sun Z, Tian F, et al. Royal Society Open Science, 2018, 5(8), 180504.86 Gao H, Han J, Yang S, et al. Analytica Chimica Acta, 2014, 839, 91.87 Du D, Wang J, Wang L, et al. Analytical Chemistry, 2011, 83(10), 3770.88 Eskenazi B, Marks A R, Bradman A, et al. Environmental Health Perspectives, 2007, 115(5), 792.89 Fidder A, Hulst A G, Noort D, et al. Chemical Research in Toxicology, 2002, 15(4), 582.90 Aryal U K, Lin C T, Kim J S, et al. Analytica Chimica Acta, 2012, 723(8), 68.91 Yang M, Zhao Y, Wang L, et al. Biosensors and Bioelectronics, 2018, 104, 39.
[1] 初红涛, 姚冬, 陈嘉琪, 于淼. 金属有机骨架材料作为荧光探针的研究进展[J]. 材料导报, 2020, 34(13): 13114-13120.
[2] 韩永强, 王宇斌, 陈旋, 吴晓春. 三维原子探针表征10Ni3MnCuAl钢时效过程中析出相NiAl和Cu的变化规律[J]. 材料导报, 2019, 33(24): 4136-4140.
[3] 胡燕燕, 杨春林, 乔慧娜, 欧梅桂. 钆基稀土纳米颗粒的制备及应用研究进展[J]. 材料导报, 2019, 33(13): 2243-2251.
[4] 宋博, 陈旭. 扫描Kelvin探针力显微镜:工作原理及在材料腐蚀研究中的应用[J]. 《材料导报》期刊社, 2018, 32(7): 1151-1157.
[5] 杨历, 刘远洲, 李子院, 覃爱苗. 硫化铜量子点的研究进展[J]. 材料导报, 2018, 32(21): 3737-3742.
[6] 左鹏鹏,何雪松,吴晓春,曾艳,. 三维原子探针表征淬回火Cr-Mo-V-Ni中合金钢的元素分布*[J]. 材料导报编辑部, 2017, 31(22): 85-89.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed