Please wait a minute...
材料导报  2020, Vol. 34 Issue (15): 15184-15189    https://doi.org/10.11896/cldb.19060153
  高分子与聚合物基复合材料 |
有机膦酸类化合物在混凝土工程中的应用及缓凝机理研究进展
吕兴栋1,2, 王学斌3, 李北星4
1 长江水利委员会长江科学院,武汉 430010
2 国家大坝安全工程技术研究中心,武汉 430010
3 中国电建集团昆明勘测设计研究院有限公司,昆明 650051
4 武汉理工大学硅酸盐建筑材料国家重点实验室,武汉430070
Research Progress on Application of Organic Phosphonic Acid Compounds in Concrete Engineering and Their Retarding Mechanism
LYU Xingdong1,2, WANG Xuebin3, LI Beixing4
1 Changjiang River Scientific Research Institute of Changjiang Water Resources Commission, Wuhan 430010, China
2 National Center for Dam Safety Engineering Technology Research, Wuhan 430010, China
3 Power China Kunming Engineering Corporation Limited, Kunming 650051, China
4 State Key Laboratory of Silicate Materials for Architecture, Wuhan University of Technology, Wuhan 430070, China
下载:  全 文 ( PDF ) ( 3240KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过掺加具有水化热抑制作用的外加剂来降低胶凝体系的水化放热量及放热速率是减少混凝土中温度裂缝的重要措施。相对于葡萄糖酸钠和糖钠等常用缓凝材料,有机膦酸类化合物对硅酸盐水泥具有更为有效的水化热抑制作用和缓凝作用。过去几十年,有机膦酸类化合物在国外常被作为缓凝材料应用于工民建、油田固井和一些有特殊要求的混凝土工程中。在我国,有机膦酸类化合物主要应用在油田固井混凝土工程中,近年来在越来越多的工民建混凝土工程中也有所应用,但是其应用范围仍然十分有限。有机膦酸类化合物具有以下特征:(1)在一定掺量范围内可大幅降低硅酸盐水泥的水化放热速率和放热量,改善硅酸盐水泥水化放热过程;(2)有机膦酸类化合物对水泥熟料含量的变化不敏感,与硅酸盐水泥、聚羧酸减水剂和萘系减水剂均具有较好的适应性;(3)在一定掺量范围内,有机膦酸类化合物可改善混凝土拌合物性能,提高混凝土长期力学性能;(4)有机膦酸类化合物的主链结构具有高温稳定性,适用温度达200 ℃以上,在高温环境下其对硅酸盐水泥仍具有较强的缓凝作用。
有机膦酸类化合物对硅酸盐水泥水化的影响较复杂,目前硅酸盐水泥缓凝机理尚不十分明确。不同学者对此持有不同的观点。其中一种观点认为:有机膦酸类化合物首先促进水泥中Ca2+溶解,在富铝层表面促进水泥矿物水化,进而促进铝酸三钙 (C3A)的水化;接着与水泥中Ca2+结合,在硅酸三钙 (C3S)表面形成半透水的稳定螯合物,抑制C3S的水化,从而抑制水泥的进一步水化。而另一种观点认为:有机膦酸类化合物有效抑制了钙矾石凝胶向晶体转变的成核和生长过程,并认为延缓钙矾石晶体的生长是导致硅酸盐水泥缓凝的主要原因。
本文从有机膦酸类化合物在混凝土工程中的应用着手,总结了有机膦酸类化合物对硅酸盐水泥水化动力学的影响以及缓凝机理的研究进展。基于此,为进一步扩大有机膦酸类化合物在混凝土工程中的应用范围,提出了应进一步研究有机膦酸化合物对混凝土力学性能、体积稳定性、热力学性能和耐久性能的影响,同时应进一步研究有机膦酸类化合物对硅酸盐水泥水化动力学的影响及缓凝机理。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吕兴栋
王学斌
李北星
关键词:  有机膦酸化合物  水泥混凝土  水化动力学  缓凝机理    
Abstract: Reducing the cumulative hydration heat and heat evolution rate of the cementitious system by the means of adding an admixture with hydration heat inhibition is an important measure to reduce the temperature cracks in the concrete. Organic phosphonic acid compounds have more effective hydration heat inhibition and retardation effects on Portland cement. In the past few decades, organic phosphonic acid has been widely used in industrial and civil construction engineering, oil field cementing engineering and some concrete projects with special requirements. The application of organic phosphonic acid compounds in China is mainly concentrated in oilfield cementing concrete engineering. In recent years, it has also been more and more popular applied in civil engineering concrete projects, but the scope and extent of application are still very limited. In summary, organic phosphonic acid compounds have the following characteristics:(1) they can greatly reduce the cumulative hydration heat and heat evolution rate within a certain dosage. (2)They aren't sensitive to changes in cement clinker content, and they have good adaptability with Portland cement, polycarboxylate water reducer and naphthalene water reducer.(3) They can improve the performance of concrete mix and improve the long-term mechanical properties of concrete at a certain dosage ranges. (4) The main chain structure of organic phosphonic acid compounds have high temperature stability, and the applicable temperature is above 200 ℃. They can maintain strong retarding effect on Portland cement at a higher temperature.
The effect of organic phosphonic acid compounds on the hydration of Portland cement is complicated, and the mechanism of retardation of Portland cement is not very clear. Different scholars hold different views on this.One of the views proposes that it firstly promotes the dissolution of Ca2+ in the cement, promotes the hydration of the cement mineral on the surface of the aluminum-rich layer, and promotes the hydration of the tricalcium aluminate (C3A). Then, they form a semi-permeable stable chelate on the surface of tricalcium silicate (C3S) in combination with Ca2+, which inhibits the hydration of C3S and inhibits further hydration of cement. Another point of view proposes that the organophosphonic acid compound effectively inhibits the nucleation and growth process of ettringite gel to crystal transformation, and it believes that delaying the growth of ettringite crystals is the main cause of retardation of Portland cement.
In this paper, the application of organic phosphonic acid compounds in concrete engineering is summarized. The study progress of organic phosphonic acid compounds on hydration kinetics and retardation mechanisms of Portland cement are also summarized.Based on this, in order to further expand the application range of organic phosphonic acid compounds in concrete engineering, it is proposed to further study the effects of organic phosphonic acid compounds on the mechanical properties, volume stability, thermodynamic properties and durability of concrete.And the effect of organic phosphonic acid compounds on hydration kinetics of Portland cement and its retardation mechanism are further studied.
Key words:  organic phosphonic acid compounds    cement and concrete    hydration kinetics    inhibition mechanism
               出版日期:  2020-08-10      发布日期:  2020-07-14
ZTFLH:  TU528  
基金资助: 长江科学院中央级公益性科研院所基本科研业务费(CKSF2019200/CL);中国长江三峡集团公司科研项目(BHT0807)
通讯作者:  1115650343@qq.com   
作者简介:  吕兴栋,2015年6月毕业于武汉理工大学硅酸盐国家重点实验室,获得工学硕士学位。现为长江水利委员长江科学院工程师,主要从事水工混凝土和固体废弃物再利用研究。主持长江科学院中央级公益性科研院所基本科研业务费1项,参与国家重点研发计划1项,国家自然科学基金2项。主持或参与横向科研项目10余项。Journal of Cleaner Production、《长江科学院院报》等学术期刊审稿人。以第一作者发表SCI论文5篇,EI或CPCI论文4篇,中文核心论文9篇,授权国家发明专利4项。
引用本文:    
吕兴栋, 王学斌, 李北星. 有机膦酸类化合物在混凝土工程中的应用及缓凝机理研究进展[J]. 材料导报, 2020, 34(15): 15184-15189.
LYU Xingdong, WANG Xuebin, LI Beixing. Research Progress on Application of Organic Phosphonic Acid Compounds in Concrete Engineering and Their Retarding Mechanism. Materials Reports, 2020, 34(15): 15184-15189.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19060153  或          http://www.mater-rep.com/CN/Y2020/V34/I15/15184
1 Bernd Nowack.Water Research, 2014, 37, 2533.2 Fang Liu, Lu Xianhui, Yang Wei, et al.Desalination, 2013, 313,193 Shen Liang, Wang Fangqian, Tian Lian, et al. Journal of Membrane Science, 2018, 563, 285.4 Dyhrman S T, Chappell P D, Haley S T, et al. Nature, 2010, 439, 69. 5 Huang J L, Su Z C, Xu Y.Journal of Molecular Evolution, 2011, 61, 686. 6 Dyhrman S T, Chappell P D, Haley S T, et al. Nature, 2010, 439, 69. 7 Huang J L, Su Z C, Xu Y.Journal of Molecular Evolution, 2011, 61, 685. 8 Dyhrman S T, Chappell P D, Haley S T, et al. Nature, 2010, 439, 70. 9 Lesueur C,Pfeffer M,Fuerhacker M.Chemosphere, 2005, 59, 688.10 Lupu C, Arvidson R S, Luttge A, et al.Chemical Communications, 2005,4, 2355.11 Engel R.Chemical Reviews, 1977, 77(3), 355.12 Ramachandran V S, Lowery M S, Wise T,et al.Materials and Structures, 1993, 26(7), 431.13 Johann Plank. In: Concrete admixture and its application technology conference. Beijing, 2004, pp.15.14 Conveney P V, Davey R J, Griffin J L W, et al.Chemical Communications,1998, 14, 146715 Li Bing.Jiangxi Building Materials, 2018(10), 22 (in Chinese).李兵.江西建材, 2018(10), 22.16 Lin Yankun, Zhang Dechen, Xu Jianzhao.Ready-mixed Concrete, 2018(8), 28 (in Chinese).林炎坤, 张德琛, 许建钊.商品混凝土, 2018(8), 28.17 Wang Jingjing, Chen Jing, Liu Yongdao, et al.Ready-mixed Concrete, 2017(1), 65 (in Chinese).王晶晶,陈景, 刘永道, 等.商品混凝土, 2017(1), 65.18 Chen Jing, Lu Jialin, Xu Fenlian, et al.China Concrete and Cement Pro-ducts, 2014(11), 26 (in Chinese).陈景, 卢佳林, 徐芬莲, 等.混凝土与水泥制品, 2014(11), 26.19 Wang Yingchun. Study on specific characteristics and qualification requirements of lift joints in roller compacted concrete. Ph. D. Thesis, Zhejiang University, China, 2007 (in Chinese).王迎春. 碾压混凝土层面结合特性和质量标准研究. 博士学位论文, 浙江大学, 2007.20 Lv Xingdong, Li Beixing, Shi Yan, et al.Advances in Engineering Research, 2016, 44, 1. 21 Zou Jianlong, Qu Jiansheng, Xu Yongshen, et al.Oilfield Chemistry, 2008, 25(4), 388 (in Chinese).邹建龙, 屈建省, 许涌深, 等.油田化学, 2008, 25(4), 388.22 Smith D K. In: Cementing. Society of Petroleum Engineers. New York, 1990.23 Thomas Hurnaus, Johann Plank. Journal of Natural Gas Science and Engineering, 2016,33,168.24 Andrew CJupe, Angus PWilkinson, Gayr Pfunkhouser.Cement and Concrete Research, 2012,42(8),1085.25 Brothers L E. U.S. patent application, US 5340397, 1994.26 Casabonne J M, Jouve M, Nelson E. U.S. patent application, US 5503671, 1996.27 Barlet-Gouedard V, Brand F J, Maroy P, et al. U.S. patent application, US 6511537, 2003.28 Wen Xueli, Wei Zhousheng, Li Bo, et al.Drilling Fluid & Completion Fluid, 2011, 28(5), 51 (in Chinese).温雪丽, 魏周胜, 李波, 等.钻井液与完井液, 2011, 28(5), 51.29 Qi Zhigang, Xu Yiji, Wang Huaiping, et al. Drilling Fluid & Completion Fluid, 2005, 22(5), 25 (in Chinese).齐志刚, 徐依吉, 王槐平, 等.钻井液与完成液, 2005, 22(5), 25.30 Zhao Yue, Sha Linhao, Wang Jiandong.Drilling Fluid & Completion Fluid, 2011, 28(11), 55 (in Chinese).赵岳, 沙林浩, 王建东.钻井液与完成液, 2011, 28(11),55.31 Wang Hongke, Wang Ye, Jin Jianxia, et al.Drilling Fluid & Completion Fluid, 2016, 33(3), 92 (in Chinese).王红科, 王野, 靳剑霞, 等.钻井液与完成液, 2016, 33(3), 92.32 Gu P, Ramachandran V S, Beaudoin J J, et al.Advanced Cement based Materials,1995, 2(5),185.33 Ramachandran V S. In:Fourth International Conference on Superplasticizers and Other Chemical Admixtures in Concrete. Montreal, 1995, pp.131.34 Johann Plank, Andreas Brandl, Nils Recalde Lummer.Journal of Applied Polymer Science, 2007,106(6),3892.35 Liu Ming. Effects and related mechanisms of polycarboxylate superplasticizers on cement hydration. Master's Thesis, Wuhan University of Technology, China, 2015 (in Chinese).刘明. 聚羧酸减水剂对水泥水化的影响及相关机理研究. 硕士学位论文,武汉理工大学, 2015.36 Li Beixing, Lyu Xingdong, Wei Yunquan, et al. Journal of Building Materials, 2016,19(3),420 (in Chinese).李北星,吕兴栋, 魏运权, 等.建筑材料学报, 2016,19(3), 420.37 Li Beixing, Lyu Xingdong, Dong Yun, et al.Construction and Building Materials, 2018, 168, 960.38 Li Gaoming. Regulation and mechanism of adjustable solidification agent on cement hydration process. Master's Thesis, Wuhan University of Technology, China, 2011 (in Chinese).李高明. 调凝剂对水泥水化历程的调控及作用机理研究. 硕士学位论文, 武汉理工大学, 2011.39 Maximilienne Bishop, Simon G Bott, Andrew R Barron.Chemistry of Materials, 2003, 15, 3076.40 Corina Lupu, Rolf S Arvidson, Andreas Luttge, et al. Chemical Communication, 2005,18, 2355. 41 Joerg Rickert, Gerd Thielen.Cement,Concrete, and Aggregates, 2004, 26(2), 98.42 Coveney P V, Humphries W.Journal of the Chemical Society Faraday Transactions, 2009, 92(5), 835.43 Billingham J, Coveney P V.Journal of the Chemical Society Faraday Transactions, 2006, 89(16), 3025.
[1] 汪知文, 李碧雄. 稻壳灰应用于水泥混凝土的研究进展[J]. 材料导报, 2020, 34(9): 9003-9011.
[2] 丛卓红, 陈恒达, 郑南翔, 周晚君. 水泥混凝土路面纹理的研究进展[J]. 材料导报, 2020, 34(9): 9110-9116.
[3] 张长森, 胡志超, 王旭, 诸华军, 杨旭, 顾薛苏. 硅烷偶联剂/偏高岭土基地聚合物水化热及动力学研究[J]. 材料导报, 2020, 34(14): 14105-14109.
[4] 何欢, 杨荣俊, 文俊强, 唐芮枫, 王子明. 车桥耦合扰动对硫铝酸盐水泥混凝土修补材料性能的影响[J]. 材料导报, 2019, 33(Z2): 288-292.
[5] 高英力, 李学坤, 代凯明, 余先明, 袁江. 超疏水仿生水泥混凝土路面防覆冰技术及效能评价*[J]. 《材料导报》期刊社, 2017, 31(14): 132-137.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed