Please wait a minute...
材料导报  2019, Vol. 33 Issue (13): 2197-2205    https://doi.org/10.11896/cldb.18050115
  无机非金属及其复合材料 |
沥青-集料黏附作用评价方法综述
王威娜1,2,徐青杰2,周圣雄2,秦煜3,闫强4
1 重庆交通大学交通土建工程材料国家地方联合工程实验室,重庆 400074
2 重庆交通大学土木工程学院,重庆400074
3 中铁二院重庆勘察设计研究院有限责任公司,重庆 400023
4 广西交投科技有限公司,南宁 530021
A Review on Evaluation Methods of Asphalt-Aggregate Adhesion
WANG Weina1,2, XU Qingjie2, ZHOU Shengxiong2, QIN Yu3, YAN Qiang4
1 National and Local Joint Engineering Laboratory of Traffic Civil Engineering Materials, Chongqing Jiaotong University, Chongqing 400074
2 School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074
3 CREEC (Chongqing) Survey, Design and Research Co. Ltd., Chongqing 400023
4 Guangxi Trading Technology Co. Ltd., Nanning 530021
下载:  全 文 ( PDF ) ( 7389KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 沥青与集料间的黏附作用是形成沥青混合料结构的重要影响因素,且直接关系到沥青混合料的结构强度、水稳性等主要性能,也对沥青混凝土路面的使用寿命有较大影响。因此,对沥青与集料间黏附作用方面的研究十分必要。
典型的黏附作用评价方法可分为如下三类:(1)在石质基材(或其他材料)表面涂抹沥青层,对沥青层与基材界面施加垂直拉力或剪切应力,以沥青从基材表面剥离所需力的大小(或剪切强度)间接表征两者之间的黏附作用;(2)表面涂覆沥青的集料放入水中,水的作用使得沥青从集料表面剥落,以沥青从集料表面剥落的程度评价沥青与集料之间的黏附作用;(3)基于表面能理论,测试沥青与集料的表面能参数,从能量角度评价沥青-集料的黏附作用。我国《公路工程沥青及沥青混合料试验规程》(JTG E20-2011)中规定使用水煮法和水浸法来评价沥青-集料黏附性能,试验方法简单快捷,但测试结果受人为判断影响,缺乏定量评价指标。
随着科学技术的进步,研究者逐渐将各种新技术运用到沥青-集料黏附性能检测中,如超声波模拟动水压力对传统水煮法进行改进,并应用高质量的图形处理系统使得沥青剥落程度指标得到更精准的量化;基于原子力显微镜技术(Atomic force microscope,AFM),在不同测试模式下进行微纳观尺度沥青-集料黏附作用评价,国外研究人员还依托神经网络模型,实现黏附性能的量化。随着原子力显微镜技术(AFM)的不断成熟,将该技术应用于对沥青-集料黏附作用的评价中已成为近年来的研究热点。同时,在研究人员的努力下,使用AFM新发展起来的测试模式测量沥青、集料的表面能及黏附功已取得突破性进展。随着对黏附作用研究的不断深入,一些研究新思路也开始出现,研究人员为了探讨在不同荷载作用下沥青与集料黏附性能的变化,针对“三明治”柱体试件采用动态力学分析仪(Dynamic mechanics analyzer,DMA)进行拉伸试验,分析沥青与集料拉伸黏结疲劳与加载应力之间的关系,将黏附与疲劳有机地联系在一起,同时以沥青胶浆(集料+矿粉)为研究对象,对其进行黏附疲劳测试,以沥青胶浆黏附疲劳失效表征沥青与细集料之间的黏附作用。
本文通过回顾国内外沥青与集料黏附作用的研究发展历程,对沥青-集料黏附作用研究中的评价方法及研究现状进行综述,重点介绍四种沥青-集料黏附作用评价体系,并对各评价体系中评价方法的优缺点进行比较和评述,指出现有沥青-集料黏附性评价体系的不足,提出该领域未来的发展趋势和研究热点。以期为后续沥青-集料黏附性能试验方法改进研究和应用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王威娜
徐青杰
周圣雄
秦煜
闫强
关键词:  黏附作用  评价体系  力学拉伸  剥落  表面能  原子力显微镜  黏附疲劳    
Abstract: The adhesion between asphalt and aggregate is an important factor for asphalt mixture structure, and it is directly related to the main properties such as structural strength, water stability of asphalt mixture, and also has a great impact on the service life of asphalt pavement. Therefore, it is necessary to analyze the adhesion between asphalt and aggregate.
Typical adhesion evaluation methods can be classified into the following three categories: (i)smearing the asphalt layer on the surface of stone substrate (or other materials), applying vertical tensile or shear stress to the interface between the asphalt layer and the substrate, and indirectly characterizes the adhesion between asphalt and aggregates by the magnitude of force (or shear strength) when asphalt is peeled off from the substrate surface; (ii) the asphalt-coated aggregate is placed in water, and the action of water causes the asphalt to peel off from the aggregate surface. The adhesion between asphalt and aggregate is evaluated by the degree of asphalt peeling from the aggregate surface; (iii) based on the surface energy theory, the surface energy parameters of asphalt and aggregate are tested, and the asphalt-aggregate adhesion is evaluated by the energy parameters. Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering (JTG E20-2011) in China specifies the use of boiling and water immersion methods to evaluate asphalt-aggregate adhesion properties. Although the test method is simple and fast, the results are influenced by human judgment and lack of quantitative evaluation indicators.
With the development of science and technology, researchers have gradually applied various new technolofgies to the asphalt-aggregate adhesion performance test, such as ultrasonic simulation of hydrodynamic pressure to improve the traditional boiling method, the application of high-quality graphics processing system to quantify the degree of asphalt peeling. And based on atomic force microscope (AFM), the micro-nano scale asphalt-aggregate adhesion evaluation is carried out with different test modes. Neural network model is used to quantify the adhesion properties. With the continuous maturity of AFM, the application of this technology to evaluate asphalt-aggregate adhesion has become a research hotspot in recent years. At the same time, under the efforts of researchers, the newly developed test using AFM has made breakthroughs in measu-ring the surface energy and adhesion of asphalt and aggregates. Also some new research ideas have begun to appear. In order to investigate the changes in the adhesion properties of asphalt and aggregate under different loads, the researchers used dynamic mechanics analyzer (DMA) for tensile tests of “sandwich” cylinder specimens to analyze the relationship between asphalt and aggregate tensile bond fatigue and loading stress. Therefore, adhesion is associated with fatigue organically, and the asphalt mastic (aggregate + mineral powder) is taken as the research object, and the adhesion fatigue test is carried out. The adhesion between asphalt and fine aggregate is characterized by the adhesion fatigue failure of asphalt mastic.
This paper reviewed the development history of asphalt and aggregate adhesion at home and abroad, comprehensively described the evaluation methods and studied the status of asphalt-aggregate adhesion. Four asphalt-aggregate adhesion evaluation systems were classified. The advantages and disadvantages of the evaluation methods in the evaluation system were compared. The shortcomings of asphalt adhesion evaluation system were presented, and the future development trends and research hotspots in this field were proposed. It provided the reference for the further improvement and application of asphalt-aggregate adhesion performance test method.
Key words:  adhesion    evaluation system    mechanical stretching    spalling    surface energy    atomic force microscopy    adhesion fatigue
               出版日期:  2019-07-10      发布日期:  2019-06-14
ZTFLH:  U416.217  
基金资助: 国家自然科学基金(51508064;51408083);重庆市前沿与应用基础研究计划项目(cstc2016jcyjA0128);桂交科(2013-100-28);交通土建工程材料国家地方联合工程实验室开放基金(LHSYS-2016-01)
作者简介:  王威娜,重庆交通大学副教授、硕士研究生导师。2006年7月本科毕业于长安大学公路学院,2014年7月在长安大学公路学院道路与铁道工程专业取得博士学位,期间获得公派联合培养博士研究生资格,在美国佐治亚理工学院开展学习与研究。主要从事道路材料与结构的研究工作,发表学术论文20余篇。
秦煜, 2005年7月本科毕业于长安大学公路学院,2013年4月在长安大学公路学院桥梁与隧道工程专业取得博士学位。中铁二院重庆勘察设计研究院有限责任公司高级工程师、重庆交通大学硕士研究生导师。担任重庆市科学技术协会第五届委员会委员。主要从事桥梁与道路结构的研究工作。发表学术论文20余篇。
引用本文:    
王威娜, 徐青杰, 周圣雄, 秦煜, 闫强. 沥青-集料黏附作用评价方法综述[J]. 材料导报, 2019, 33(13): 2197-2205.
WANG Weina, XU Qingjie, ZHOU Shengxiong, QIN Yu, YAN Qiang. A Review on Evaluation Methods of Asphalt-Aggregate Adhesion. Materials Reports, 2019, 33(13): 2197-2205.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18050115  或          http://www.mater-rep.com/CN/Y2019/V33/I13/2197
1 Li L H, Zhang N L, Sun D Q. Road engineering materials, China Communications Press, China,2010 (in Chinese).李立寒, 张南鹭, 孙大权. 道路工程材料, 人民交通出版社, 2010.2 Sha Q L. Premature damage and its preservative measures of bituminous pavement on expressway, China Communications Press, China,2001 (in Chinese).沙庆林. 高速公路沥青路面早期破坏现象及预防, 人民交通出版社, 2001.3 Sun L J. Structure behavior study for asphalt pavement, China Communications Press,China, 2005 (in Chinese).孙立军. 沥青路面结构行为理论, 人民交通出版社, 2005.4 Wang L N. The research for influncing mechanism of interface bonding property between asphalt and aggregate. Master's Thesis, Hefei University of Technology, (China,) 2016 (in Chinese).王利娜. 沥青-集料界面粘结性能影响机制研究.硕士学位论文, 合肥工业大学, 2016.5 Xiao Y. Fracture mechanisms of binder-aggregate system and its effect on properties of asphalt mixtures. Master's Thesis, Wuhan University of Technology, China, 2008 (in Chinese).肖月. 沥青混合料中胶浆-集料粘结性及力学性能研究. 硕士学位论文, 武汉理工大学, 2008.6 Zhou W F. Study on adhesion of interface between asphalt and aggregate. Master's Thesis, Chang'an University, China, 2002 (in Chinese).周卫峰. 沥青与集料界面粘附性研究. 硕士学位论文, 长安大学, 2002.7 Yan X L, Liang C Y. China Journal of Highway and Transport, 2001,14(4),26 (in Chinese).延西利, 梁春雨. 中国公路学报, 2001,14(4),26.8 Chen Z F, Chen Z D, Chang Y T, et al. Journal of Jiangsu University (Natural Science Edition), 2017,38(1),98 (in Chinese).陈峙峰, 陈忠达, 常艳婷, 等. 江苏大学学报(自然科学版), 2017,38(1),98.9 Pang X Y. Asphalt and aggregate adhesion characteristics analysis based on the principle of AFM and the surface energy. Master's Thesis, Harbin Institute of Technology, China, 2015 (in Chinese).庞骁奕. 基于AFM与表面能原理的沥青与集料粘附特性分析. 硕士学位论文, 哈尔滨工业大学, 2015.10 Yi J Y, Pang X Y, Yao D D, et al. Acta Materiae Compositae Sinica, 2017,34(5),1111 (in Chinese).易军艳, 庞骁奕, 姚冬冬, 等. 复合材料学报, 2017,34(5),1111.11 Yi J, Pang X, Feng D, et al. Road Materials & Pavement Design, 2018,19(5),1102.12 Tarefder R A, Ahsan S. Journal of Microscopy, 2014,254(1),31.13 Mo L T. Damage development in the adhesive zone and mortar of porous asphalt concrete. Ph.D. Thesis, Delft University of Technology, Netherlands, 2010.14 Mo L T, Huurman M, Wu S P, et al. Materials & Design, 2009,30(1),170.15 Wang D, Yi J, Feng D. The Scientific World Journal, 2014,2014,1.16 Huurman M, Mo L T. Fatigue in mortar and adhesive zones; measurements, test interpretation and determination of model parameters. Laboratory of Road and Railway Engineering, Delft University of Technology, Netherlands, 2007. 17 Wei J, Zhang Y. Journal of Testing and Evaluation, 2012,40(5),1.18 Nguyen T, Byrd W E, Bentz D P, et al. Development of a method for measuring water-stripping resistance of asphalt/sillieous aggregate mixtures. Transport Research Board, Washington D.C.,1996. 19 Wang L. Investigation of the interface structure and adhesion mechanism between asphalt and aggregate. Master's Thesis, Chang'an University, China, 2014 (in Chinese).王璐. 沥青-集料界面相结构和粘附机理研究. 硕士学位论文, 长安大学, 2014.20 Guo M, Tan Y, Zhou S. Construction & Building Materials, 2014,68(4),769.21 Song Y R, Zhang Y Z. Petroleum Asphalt, 2005, 19(3),1 (in Chinese).宋艳茹, 张玉贞. 石油沥青, 2005, 19(3),1.22 Babcock G B, Statz R J, Larson D S. Proceedings of the Canadian Technical Asphalt Association, 1998,43,1.23 Lacombe R. Adhesion measurement methods: Theory and practice, CRC Press Taylor & Francis Group, USA,2006.24 Wang Y. The bonding characteristic research of aggregate-asphalt mortar interface. Master's Thesis, Harbin Institute of Technology, China, 2015 (in Chinese). 王元. 集料-沥青胶浆界面粘结特性研究. 硕士学位论文, 哈尔滨工业大学, 2015.25 Xu M Y, Li X L, Zhang L Q. Journal of China & Foreign Highway, 2011,31(6),225 (in Chinese).徐鸣遥, 李晓林, 张立群. 中外公路, 2011,31(6),225.26 Wang J, Chen Y J. Shanxi Architecture, 2012,38(5),126 (in Chinese).王军, 陈燕娟. 山西建筑, 2012,38(5),126.27 Research Institute of Highway, Ministry of Transport. Standard test met-hods of bitumen and bituminous mixtures for highway engineering (JTG E20-2011), China Communications Press, China,2011 (in Chinese).交通运输部公路科学研究院. 公路工程沥青及沥青混合料试验规程(JTG E20-2011), 人民交通出版社, 2011.28 Yan J J. Journal of Tongji University, 1978(4),69 (in Chinese).严家伋. 同济大学学报, 1978(4),69.29 Xu K W. Highway, 1998(8),42 (in Chinese). 徐克威. 公路, 1998(8),42.30 Chen B H. Based on the photoelectric colormetric method of asphalt and mineral aggregate adhesion effect. Master's Thesis, Chang'an University, China, 2014 (in Chinese).陈斌华. 基于光电比色法的沥青与矿料粘附效应研究. 硕士学位论文, 长安大学, 2014.31 Ma F, Fu Z P, Fu Z, et al. Journal of Zhengzhou University (Enginee-ring Science), 2015,36(3),77 (in Chinese).马峰, 富志鹏, 傅珍, 等. 郑州大学学报(工学版), 2015,36(3),77.32 Cheng R. Highway, 2016,61(4),212 (in Chinese).程锐. 公路, 2016,61(4),212.33 Geng J G. Study on the aging mechanism and recycling technique of asphalt. Ph.D. Thesis, Chang'an University, China, 2009 (in Chinese).耿九光. 沥青老化机理及再生技术研究. 博士学位论文, 长安大学, 2009.34 Yuan J A, Xu X J. Highway, 1999(11),53 (in Chinese).原健安, 徐希娟. 公路, 1999(11),53.35 Hao P W, Li Y, Liu J Q. Journal of Wuhan University of Technology, 2003,25(3),13 (in Chinese).郝培文, 李瑜, 刘建强. 武汉理工大学学报, 2003,25(3),13.36 Peng Y H, Wang L Z, Yu L. Journal of Shenyang Jianzhu University (Natural Science), 2009,25(2),282 (in Chinese).彭余华, 王林中, 于玲. 沈阳建筑大学学报(自然科学版), 2009,25(2),282.37 Zhou W F. Journal of Highway and Transportation Research and Development, 2004,21(5),18 (in Chinese).周卫峰. 公路交通科技, 2004,21(5),18.38 Fan L, Zhang Y Z, Wang L. Highway, 2011(12),151 (in Chinese).樊亮, 张玉贞, 王林. 公路, 2011(12),151.39 Zhang K, Zhang Z Q. Journal of Hefei University of Technology (Natural Science), 2015,38(6),810 (in Chinese).张苛, 张争奇.合肥工业大学学报(自然科学版), 2015,38(6),810.40 Zhang Q, Hao P W, Bai Z Y. Journal of Highway and Transportation Research and Development, 2015,32(9),9 (in Chinese).张庆, 郝培文, 白正宇. 公路交通科技, 2015,32(9),9.41 Yuan J, Dong W J, Qian W B, et al. Science Technology and Enginee-ring, 2013,13(5),1388 (in Chinese).袁峻, 董文姣, 钱武彬, 等. 科学技术与工程, 2013,13(5),1388.42 Dong W J. Resaerch on the effect of aggregate morphology on affnity between bitumen and aggregate. Master's Thesis, Yangzhou University, China, 2013 (in Chinese).董文姣. 集料形貌对沥青-集料黏附性影响研究. 硕士学位论文, 扬州大学, 2013.43 Liu Y M, Han S, Li B. Journal of Building Materials, 2010,13(6),769 (in Chinese).刘亚敏, 韩森, 李波.建筑材料学报, 2010,13(6),769.44 Zollinger C J. Application of surface energy measurementes to evaluate moisture susceptibility of asphalt and aggregates. Master's Thesis, Texas A & M University, USA, 2005.45 Copeland R A. Influence of moisture on bond strength of asphalt-aggregate systems. Ph.D. Thesis, Vanderbilt University, USA, 2007.46 Bhasin A, Little D. Journal of Material in Civil Engineering, 2007, 19(8), 634.47 Arabani M, Hamedi G H. Journal of Mate-rials in Civil Engineering, 2011,23(6),802.48 Howson J, Masad E, Bhasin A, et al. Construction and Building Mate-rials, 2011,25(5),2554.49 Tan Y, Guo M. Construction & Building Materials, 2013,47(5),254.50 Hamedi G H, Moghadas Nejad F. Road Materials and Pavement Design, 2014,16(2),239.51 Diab A, You Z, Hossain Z, et al. Transportation Research Record: Journal of the Transportation Research Board, 2014,3(2446),52.52 Hossain Z, Bairgi B, Belshe M. Construction and Building Materials, 2015,95,45.53 Ghabchi R, Singh D, Zaman M. Construction and Building Materials, 2014,73,479.54 Shafabakhsh G H, Faramarzi M, Sadeghnejad M. Construction and Buil-ding Materials, 2015,98,456.55 Zhang Y. Study on adhesion of interface between asphalt and aggregate. Master's Thesis, Chang'an University, China, 2014 (in Chinese).张越. 沥青与集料界面粘附性研究. 硕士学位论文, 长安大学, 2014.56 Sun Y, Li L H. Journal of Building Materials, 2016, 19(2),285 (in Chinese).孙瑜, 李立寒. 建筑材料学报, 2016, 19(2),285.57 Luo R, Zheng S S, Zhang D R, et al. China Journal of Highway and Transport, 2017,30(6),209 (in Chinese).罗蓉, 郑松松, 张德润, 等. 中国公路学报, 2017,30(6),209.58 Nejad F M, Hamedi G H, Azarhoosh A R. Journal of Materials in Civil Engineering, 2013,25(8),1119.59 Liao Y C, Shi C H, Huo D. Highway, 2013(5),94 (in Chinese).廖玉春, 史朝辉, 霍典. 公路, 2013(5),94.60 Khan A, Redelius P, Kringos N. Construction and Building Materials, 2016,125(Sup C),1005.61 Li B, Zhang Z H, Liu X, et al. Materials Review B:Research Papers, 2017,31(2),115 (in Chinese).李波, 张智豪, 刘祥, 等. 材料导报:研究篇, 2017,31(2),115.62 Gan X L, Zheng N X, Cong Z H. Journal of Beijing University of Techno-logy, 2017,43(9),1388 (in Chinese).甘新立, 郑南翔, 丛卓红. 北京工业大学学报, 2017,43(9),1388.63 Das P K, Baaj H, Tighe S, et al. Road Materials and Pavement Design, 2016,17(3),693.64 Fischer H R, Dillingh E C, Hermse C G M. Applied Surface Science, 2013,265(2),495.65 Lyne A L, Redelius P, Collin M, et al. Materials and Structures/Mate-riaux et Constructions, 2013,46(1-2),47.66 Abd D M, Al-Khalid H, Akhtar R. Road Materials and Pavement Design, 2017,18(Sup2),189.67 Li B. Research on the adhesion characteristics of warm mix asphalt based on atomic force microscope technique. Master's Thesis, Lanzhou Jiaotong University, China, 2015 (in Chinese).李波. 基于原子力显微镜技术的温拌沥青老化过程中粘附特性研究. 硕士学位论文,兰州交通大学, 2015.68 Yu X, Burnham N A, Mallick R B, et al. Fuel, 2013,113(9),443.69 Lyne  L, Wallqvist V, Birgisson B. Fuel, 2013,113(2),248.70 Fischer H R, Dillingh E C, Hermse C G M. Road Materials & Pavement Design, 2014,15(1),1.71 Das P K, Baaj H, Kringos N, et al. Road Materials & Pavement Design, 2015,16(Sup1),265.72 Tarefder R A, Zaman A M. Journal of Materials in Civil Engineering, 2010,22(7),714.73 Li Y, Yang J, Tan T. Construction and Building Materials, 2015,101(1),159.74 Xu M, Yi J, Feng D, et al. ACS Applied Materials & Interfaces, 2016,8(19),12393.75 Lopez-Contreras Y F, Chaves-Guerrero A, Akbulut M, et al. CT & F-Ciencia Tecnologia Y Futuro, 2017,7(1),59.76 Tarefder R A, Ahsan S, Arifuzzaman M. Journal of Materials in Civil Engineering, 2017,29(4),1.77 Medendorp C A. Atomic force microscopy method development for surface energy analysis. Ph. D. Thesis, University of Kentucky, USA, 2011.78 Huang P, Guo D, Wen S Z. Interface Mechanics, Tsinghua University Press, China,2013 (in Chinese)黄平, 郭丹, 温诗铸. 界面力学, 清华大学出版社, 2013.79 Wu J T. Studies on interaction capability of asphalt and aggregate based on rheological characteristics. Master's Thesis, Harbin Institute of Technology, China, 2009 (in Chinese).吴建涛. 基于流变特性的沥青与集料交互作用能力的研究. 硕士学位论文, 哈尔滨工业大学, 2009.80 Liu F, Li Y Z, Huang Y Y. Journal of China & Foreign Highway, 2005,25(4),192 (in Chinese).刘峰, 李宇峙, 黄云涌. 中外公路, 2005,25(4),192.81 Wu S, Cong P, Yu J, et al. Fuel, 2006, 85(9),1298.82 Mo L T, Wu S P, Huurman M, et al. Theoretical & Applied Fracture Mechanics, 2006,46(2),140.83 Cho D W, Bahia H U. Transportation Research Record: Journal of the Transportation Research Board, 2007,1998(1),10.84 Kanitpong K, Bahia H U. Journal of the Association of Asphalt Paving Technologists, 2003,72,502.
[1] 周莹, 肖利吉, 姚丽, 徐祖顺. 自修复型超疏水材料研究进展[J]. 材料导报, 2019, 33(7): 1234-1242.
[2] 李虎, 赵君文, 王超群, 郭安, 李恒奎, 戴光泽. 时效应力对7A04铝合金二级时效力学及剥落腐蚀性能的影响[J]. 材料导报, 2019, 33(12): 2025-2029.
[3] 宋博, 陈旭. 扫描Kelvin探针力显微镜:工作原理及在材料腐蚀研究中的应用[J]. 《材料导报》期刊社, 2018, 32(7): 1151-1157.
[4] 崔亚楠,于庆年,韩吉伟,陈超. 复杂气候条件下胶粉改性沥青的低温性能[J]. 《材料导报》期刊社, 2018, 32(12): 2078-2084.
[5] 李云涛, 晏华, 余荣升, 王群. 基于功效系数法的复合相变材料综合性能评价研究*[J]. CLDB, 2017, 31(8): 135-139.
[6] 高英力,代凯明,李学坤,马 路,何 倍. 超疏水沥青混凝土抗凝冰性能及评价[J]. 《材料导报》期刊社, 2017, 31(24): 63-68.
[7] 王毅, 王盼, 索红莉, 贾强, 卢东琪, 李怀洲, 吴海明. 哈氏合金电化学抛光工艺的研究*[J]. 《材料导报》期刊社, 2017, 31(2): 37-40.
[8] 刘源, 唐鹏, 张静全, 武莉莉, 李卫, 王文武, 冯良桓. N离子注入改性SnO2缓冲层及其CdTe太阳电池应用*[J]. 《材料导报》期刊社, 2017, 31(17): 152-157.
[9] 李海莲, 李波, 王起才, 李良英, 王永宁. 基于表面能理论的老化温拌SBS改性沥青结合料的粘附性*[J]. 《材料导报》期刊社, 2017, 31(16): 129-133.
[10] 高英力, 李学坤, 代凯明, 余先明, 袁江. 超疏水仿生水泥混凝土路面防覆冰技术及效能评价*[J]. 《材料导报》期刊社, 2017, 31(14): 132-137.
[11] 尹华伟, 李明伟, 曹亚超, 程旻, 宋洁. ZTS晶体(100)面生长过程的实时AFM研究*[J]. 《材料导报》期刊社, 2017, 31(12): 15-20.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed