Please wait a minute...
材料导报  2019, Vol. 33 Issue (13): 2191-2196    https://doi.org/10.11896/cldb.18040140
  无机非金属及其复合材料 |
云母微晶玻璃复合材料的研究进展
田清波1,2,李春珍3,李海文3,王玥2,吕志杰2
1 山东建筑大学山东省绿色建筑协同创新中心,济南 250101
2 山东建筑大学材料科学与工程学院,济南 250101
3 山东省建筑科学研究院,济南 251010
An Overview on Study of the Mica-based Glass-Ceramic Composites
TIAN Qingbo1, 2, LI Chunzhen3, LI Haiwen3, WANG Yue2, LYU Zhijie2
1 Co-innovation Center for Green Building of Shandong Province, Shandong Jianzhu University, Jinan 250101
2 School of Materials Science and Engineering, Shandong Jianzhu University, Jinan 250101
3 Shandong Academy of Building Research, Jinan 251010
下载:  全 文 ( PDF ) ( 1909KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 云母微晶玻璃具有优异的可加工性、高热震性及良好的断裂韧性等多种优异性能,尤其是加工性能使其展现了良好的工程应用前景,引起人们广泛的兴趣。但层片状云母晶体的析出会使微晶玻璃强度有所下降,因此如何提高云母微晶玻璃的强度是多年来人们研究的重点。目前,用于提高云母微晶玻璃强度的方法可归纳为四种:(1)通过改变云母晶体层间结合离子的种类,提高云母晶体间的结合力;(2)通过调整基础玻璃组成和热处理制度裁剪显微组织,改善材料的强度;(3)通过热压等工艺实现定向析晶;(4)通过复合化设计形成复合材料,提高云母微晶玻璃的综合性能。其中云母微晶玻璃的复合化设计因具有复合相种类选择范围宽、添量可控、性能改善效果显著等优势而得到较大的发展。
云母微晶玻璃复合材料的复合相以颗粒和纤维两大类为主。颗粒复合相包括惰性颗粒、非活性颗粒及活性颗粒。其中惰性颗粒是指颗粒本身不发生相变,与玻璃基体亦不发生反应的颗粒;非活性颗粒是指颗粒自身不发生相变,但颗粒成分之间可以发生反应的颗粒;活性颗粒可通过自身或与基体玻璃发生反应形成增强相。颗粒可添加到基础玻璃中,亦可添加到热处理前的母体玻璃中,通过改变微晶玻璃复合材料的组成,或改变云母基玻璃的析晶过程,或通过反应改变云母玻璃的析晶规律,进而影响材料的烧结。在此类云母微晶玻璃中,颗粒的种类和析出是影响云母微晶玻璃最终性能的关键。颗粒的选择及具有特殊功能的复合微晶玻璃材料的开发是未来研究的主要方向。
纤维复合相主要以外加方式掺入,可有效改善云母微晶玻璃复合材料的韧性特征。有报道将碳纤维、SiO2/Al2O3纤维、AlN纤维等用于云母微晶玻璃复合材料的制备。在纤维云母微晶玻璃复合材料中,纤维与玻璃基体的界面结合问题是获得高性能复合材料的关键。
本文综述了云母微晶玻璃复合材料的研究进展,介绍了云母微晶玻璃复合化的种类、制备及性能,着重评述了复合相在云母微晶玻璃中的作用及特征,提出了云母微晶玻璃基复合材料的发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
田清波
李春珍
李海文
王玥
吕志杰
关键词:  云母微晶玻璃  复合材料  可加工性  颗粒  纤维    
Abstract: Mica-based glass-ceramics (MGCs) have gained extensive interests due to some interesting features of good machinability, high thermal shock resistance and fracture toughness etc., especially the machinability, exhibiting a variety of engineering applications. However, the MGCs show low strength because of the weak bonds between the layer structures of mica crystals. Therefore, it has always been one of the key points to increasing the strength in investigation of MGCs for many years. Up to now, there have been many methods to increase the strength of MGCs, in which, the strength could be increased by:(i) increasing the bonding force between the interlayers of mica structure by introducing the varieties of ions; (ii) tailoring the microstructure by adjusting the composition of base glasses and thermal treatments; (iii) the preferential crystallization by extruding or hot pressing processes, and (iv) fabricating the composites by adding or precipitating reinforced second phases. Among them, the MGC composites have been made obvious advances because of the wide choices of the reinforced phases, the controlled adding amounts and the improved excellent properties.
The reinforced phases in MGC composites mainly include two types: particle and fiber. The particle phases compose inert particles that they are inert, there are not phase transition of themselves and would not react with components of parent glasses in the fabricating processes of MGC composites, un-active particles that they could not take place phase transition of themselves but might react with components of parent glasses, and active particles that they could react of themselves or with components of parent glasses. Those particles were introduced into composites by adding into base glasses or parent glasses before the thermal treatment. The formation of particle reinforced phases could influence the sintering processes of MGC composites by changing the components of composites or compositions of the parent glasses, or altering the crystallizing cha-racteristics owing to the reaction between particles and glasses. In particle-reinforced MGC composites, the types of particles and the precipitation of particles are two significant factors that influence the final properties of MGC composites. The choices of reinforced particles and MGC compo-sites with special functions will be main aspects to be explored.
The fibers were usually introduced into composites by mixing with grains of the parent glasses before thermal treatment. The addition of the fibers were beneficial to improve the toughness strength of MGC materials. Nowadays, carbon fiber, SiO2/Al2O3 fiber and AlN fiber have been reported to be used for the fabrication of MGC composites. In fiber-reinforced MGC composites, the interfaces bonding between fiber and the parent glasses is a key factor, which affects the properties of MGC composites.
In this paper, the development of MGC composites is reviewed. The varieties, preparation and properties of the MGC composites are summarized, in which, the effects and characteristics of the reinforced phases are emphasisly discussed. Also the development trends of MGC compo-sites are referred.
Key words:  mica-contained glass-ceramics    composites    machinability    powder    fiber
               出版日期:  2019-07-10      发布日期:  2019-06-14
ZTFLH:  TQ171  
基金资助: 国家自然科学基金(51375281)
作者简介:  田清波,山东建筑大学教授。1992年7月本科毕业于大连交通大学材料学院,2002年3月在东北大学材料与冶金物理化学专业取得博士学位。期间分别在山东大学进行博士后研究工作2年,在美国肯塔基大学访学1年。目前主要从事新型无机非金属材料的制备与开发工作。
引用本文:    
田清波, 李春珍, 李海文, 王玥, 吕志杰. 云母微晶玻璃复合材料的研究进展[J]. 材料导报, 2019, 33(13): 2191-2196.
TIAN Qingbo, LI Chunzhen, LI Haiwen, WANG Yue, LYU Zhijie. An Overview on Study of the Mica-based Glass-Ceramic Composites. Materials Reports, 2019, 33(13): 2191-2196.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18040140  或          http://www.mater-rep.com/CN/Y2019/V33/I13/2191
1 Abdel-Hameed S A M, Ismail N, Youssef H F, et al.International Journal of Hydrogen Energy, 2017, 42(10), 6829.2 Xia A, Miao H Y, Tan G Q.Materials Review, 2005, 19(s2), 395(in Chinese).夏傲, 苗鸿雁, 谈国强. 材料导报, 2005, 19(s2), 395.3 Gali S, Ravikumar K, Murthy B V S, et al.Dental Materials, 2018, 34(3), e36.4 Wei W, Liu Y, Tan Y, et al.Materials Today Communications, 2017, 11, 87.5 Chen X F, Zhang X K, Teng L D, et al.Journal of the Chinese Ceramic Society, 1993, 21(3), 247(in Chinese).陈晓峰, 张晓凯, 滕立东, 等.硅酸盐学报, 1993, 21(3), 247.6 El-Meliegy E M.Ceramics International, 2004, 30(6), 1059.7 Taruta S, Watanabe K, Kitajima K, et al.Journal of Non-Crystalline Solids, 2003, 321(1-2), 96.8 Beall G H. In: The American Ceramic Society, Hench L L, Freiman S W, eds. Westerville, Ohio, 1972, pp. 25.9 Grossman D G. Journal of the American Ceramic Society, 1972, 55(9), 446.10 Cheng J S, Li H, Tang L Y, et al.Glass ceramics, Chemical Industry Press, China, 2007 (in Chinese).程金树, 李宏, 汤李缨, 等.微晶玻璃, 化学工业出版社, 2007.11 Nassara A M, Hamzawy E M A, Hafez F M, et al.Ceramics International, 2012,38,(3), 1921.12 Ercenk E, Yilmaz S. Journal of Ceramic Processing Research, 2015, 16(1), 169. 13 Casasola R, Pérez J M, Romero M. Journal of the American Ceramic Society, 2016, 99(2), 484.14 Mukherjee D P, Kumar Das S.Advanced Science Letters, 2016, 22 (1), 202.15 Salman S M, Salama S N, Abo-Mosallam H A.Ceramics International, 2017, 43(12), 9424.16 Henry J, Chen X J, Law R V, et al. Journal of the European Ceramic Society, 2018, 38(1), 245. 17 Garai M, Sasmal N, Molla A R, et al.Journal of Materials Science, 2014, 49(4), 1612.18 Mallik A, Basumajumdar A, Kundu P, et al.Ceramics International, 2013, 39(3), 2551. 19 Henry J, Hill R G.Journal of Materials Science, 2004, 39(7), 2499.20 Henry J, Hill R G. Journal of Materials Science, 2004, 39(7), 2509.21 Roy S, Basu B. Trends in Biomaterials & Artificial Organs, 2006, 20(1), 90.22 Xiang Q, Liu Y, Sheng X, et al.Dental Materials, 2007, 23(2), 251.23 Qiao G J, Wang Y L, Jin Z H, et al.Journal of Inorganic Materials, 1996, 11(1), 29 (in Chinese).乔冠军, 王永兰, 金志浩, 等.无机材料学报, 1996, 11(1), 29.24 Baik D S, No K S, Chun J S, et al.Journal of the American Ceramic Society, 1995, 78(5), 1217.25 Kr manc M M, Do ler U, Suvorov D, et al.Journal of the American Ceramic Society, 2012, 95(6), 1920.26 Wang P, Yu L, Xiao H, et al. Ceramics International, 2009, 35(7), 2633.27 Wu S, Zhou Q, Wang Y J, et al.Ceramics International, 2013, 39(4), 4187.28 Taira M, Yamaki M.British Ceramic Transaction, 1995, 9(3), 109.29 Alizadeh P, Eftekhari Yekta B, Gervei A.Journal of the European Cera-mic Society, 2004, 24 (13), 3529.30 Yu L, Xiao H, Cheng Y. Ceramics International, 2008, 34(1), 63.31 Orbay B, Goller G. High Temperature Material Processes, 2009, 28(4), 211.32 Habelitz S, Carl G, Rüssel C.Materials Science and Engineering A, 2001, 307 (1), 1.33 Tian Q B, Kong D Y, Dai J S,et al. Journal of Synthetic Crystals, 2014, 43(2), 409 (in Chinese).田清波, 孔德钰, 代金山, 等.人工晶体学报, 2014, 43(2), 409.34 Ma X P, Li G X, Shen L, et al.Journal of Xi'an Jiaotong University, 2003, 37(7), 726 (in Chinese).马新沛,李光新,沈莲,等.西安交通大学学报, 2003, 37(7), 726.35 Cheng K G, Wan J L, Liang K M.Chinese Journal of Material Research, 1997, 11(3), 309 (in Chinese).程慷果, 万菊林, 梁开明.材料研究学报, 1997, 11(3), 309.36 Cheng K G, Wan J L, Liang K M.Chinese Journal of Mechanical Engineering, 1998, 34(3), 60 (in Chinese). 程慷果, 万菊林, 梁开明.机械工程学报, 1998, 34(3), 60.37 Cheng K G, Wan J L, Liang K M.Journal of the Chinese Ceramic Society,1998, 26(3), 403(in Chinese).程慷果, 万菊林, 梁开明.硅酸盐学报, 1998, 26(3), 403. 38 H che T, Habelitz S, Khodos I.Journal of Crystal Growth, 1998, 192(1), 185.39 Uno T, Kasuga T, Nakayama S, et al.Journal of American Ceramic Society, 1993, 76(2), 539.40 Tzeng J M, Duh J G, Chung K H, et al. Journal of Materials Science, 1993, 28(22), 6127.41 Tian Q B, Wang Y, Yin Y S.Journal of the Chinese Ceramic Society, 2005, 33(2), 245.42 Qin X M, Sun X Y, Su L, et al.Acta Metallurgica Sinica, 2003, 39(2), 145(in Chinese).秦小梅, 孙祥云, 苏雷, 等.金属学报, 2003, 39(2), 145.43 Liang K M, Cheng K G, Duan R G, et al.Journal of Inorganic Materials, 1998, 13(3), 315(in Chinese). 梁开明, 程慷果, 段仁官,等. 无机材料学报, 1998, 13(3), 315. 44 Taruta S, Hayashi T, Kitajima K. Journal of the European Ceramic Society, 2004, 24(10-11), 3149.45 Taruta S, Shinkawa H, Sakai M, et al.Journal of the Ceramic Society of Japan, 2005, 113(2), 185.46 Suzuki S S, Taruta S, Takusagawa N.The Korean Journal of Ceramics, 1998, 4(4), 363.47 Taruta S, Fujisaw R, Kitajima K.Journal of the European Ceramic Society, 2006, 26(9), 1687.48 Alizadeh P, Eftekhari Yekta B, Javadi T. Journal of the European Cera-mic Society, 2008, 28(9), 1569.49 Zhang W Y, Gao H, Li B, et al. Scripta Materialia, 2006, 55(3), 275.50 Beall G H, Chyung K, Gadkaree K P. U.S. patent, US5132256, 1992.51 Lin G X, Lin Y W, Wu X Q, et al. Material Science Progress, 1991, 5(4), 358(in Chinese).林广新, 林永渭, 吴叙勤, 等.材料科学进展, 1991, 5(4), 358.52 Chyung K, Dawes S B. Materials Science and Engineering A, 1993, 162 (1-2), 27.53 Montazerian M, Alizadeh P, Eftekhari Yekta B.Journal of the European Ceramic Society, 2008, 28(14), 2687.54 Qin X M, Sun X Y, Xiu Z M, et al.Chinese Journal of Structural Chemistry, 2004, 23(10),1111.55 Yang H, Wu S, Hu J, et al.Materials and Design, 2011, 32(3), 1590.56 Wu S, He H M, Huang F, et al.Chinese Journal of Conservative Dentistry, 2009, 19(11), 650(in Chinese). 吴舜, 何惠明, 黄芳, 等.牙体牙髓牙周病学杂志, 2009, 19(11), 650.57 Zheng Z, Huang B Y, Tan Y N, et al.Journal of Central South University (Science and Technology), 2009, 40(3), 638(in Chinese). 郑治,黄伯云,谭彦妮,等.中南大学学报(自然科学版), 2009, 40(3), 638. 58 Montazerian M, Alizadeh P,Eftekhari Yekta B. Journal of the European Ceramic Society, 2008, 28 (14), 2693.59 Liu Y, Sheng X X, Dan X H, et al.Materials Science and Engineering C, 2006, 26(8), 1390.60 Jin H Y, Qiao G J, Gao J Q, et al.Bulletin of the Chinese Ceramic Society, 2005, 24(4), 66 (in Chinese)金海云, 乔冠军, 高积强, 等.硅酸盐通报, 2005, 24(4), 66.61 Ke Z B, Lu A X, Liu S J, et al.Bulletin of the Chinese Ceramic Society, 2006, 25(1), 49 (in Chinese).柯尊斌, 卢安贤, 刘树江, 等.硅酸盐通报, 2006, 25(1), 49.62 Zhang W Y, Gao H. Bulletin of the Chinese Ceramic Society, 2009,28(6),1203 (in Chinese).章为夷, 高宏.硅酸盐通报, 2009, 28(6), 1203. 63 Xiang Q J, Liu Y, Sheng X X.Materials Science and Engineering of Powder Metallurgy, 2006, 11(1), 7 (in Chinese).向其军,刘咏,盛小娴.粉末冶金材料与工程, 2006, 11(1), 7.64 Qiu L L, Liang K M.Journal of the Chinese Ceramic Society, 2014, 42(6), 693(in Chinese). 邱丽莉,梁开明.硅酸盐学报, 2014, 42(6), 693.65 Hamasaki T, Eguchi K, Koyanagi Y, et al.Journal of the American Ceramic Society, 1988, 71(12), 1120.66 Tohidifar M R, Alizadeh P.Materials Chemistry and Physics, 2016, 179, 160.67 Tohidifar M R, Alizadeh P, Riello P. Materials Research Bulletin, 2012, 47(6), 1374.68 Tohidifar M R, Alizadeh P, Aghaei A R.Materials Characterization, 2015, 99, 61.69 Tohidifar M R, Alizadeh P, Aghaei A R, et al. Ceramic International, 2012, 38(4), 2813.70 Saraswati V, Raoot S.Journal of Materials Science, 1992, 27(2), 429.71 Ghaffari M, Alizadeh P, Rahimipour M R.Journal of Non-Crystalline Solids, 2012, 358(23), 3304.72 Tian Q B, Kong D Y, Zhai T.Science and Engineering of Composites Materials, 2015, 23(5), 573.73 Si W, Xu H S, Sun M, et al. Advances in Materials Science and Enginee-ring, 2016, 650, 1.74 Li R K, Jiang X S, Zuo L P, et al.China Ceramics, 2014, 50(9), 74 (in Chinese). 李荣凯, 蒋晓曙, 左李萍, 等.中国陶瓷, 2014, 50(9), 74.75 Zhou S J, Jiang X S, Zuo L P, et al.China Ceramics, 2013, 49(3), 41 (in Chinese). 周世界,蒋晓曙,左李萍,等.中国陶瓷, 2013, 49(3), 41.76 Ashouri Rad B, Alizadeh P. Ceramics International, 2009, 35(7), 2775.77 Zhang W Y,Gao H.Journal of the Chinese Ceramic Society, 2007,35(2),225 (in Chinese).章为夷,高 宏.硅酸盐学报, 2007,35(2), 225.78 Zhang W Y,Gao H.Journal of the Chinese Ceramic Society, 2007, 5(10), 1396 (in Chinese).章为夷, 高 宏.硅酸盐学报, 2007,35(10), 1396.79 James P F.Journal of Non-Crystalline Solids, 1995, 181(1-2), 1.80 赵康, 汤玉斐, 徐雷, 等.中国专利, CN 201310360645.1, 2013.81 马冬阳, 边妙莲, 孙辉, 等.中国专利, CN 2017101078986, 2017. 82 Budd M I.Journal of Materials Science, 1993, 28, 1007.83 Yu L P, Wang P, Xiao H N, et al.Rare Metal Materials and Enginee-ring, 2008, 37(s1), 654 (in Chinese).余丽萍,汪萍,肖汉宁,等.稀有金属材料与工程, 2008, 37(s1), 654.84 Li B, Yuan Y, Zhang S, et al.Journal of Materials Science: Materials in Electronics, 2011, 22(8), 924. 85 Liu P, Chen X P.Journal of Inorganic Materials, 1999, 14(2), 275 (in Chinese).刘平, 陈显平.无机材料学报, 1999, 14(2), 275.86 Talyaganov D U, Agathopoulos S, Fernandes H R, et al.Journal of the European Ceramic Society, 2004, 24(13), 3521.87 Fmarques V M, Talyaganov D U, Agathopoulos S, et al.Journal of the European Ceramic Society, 2006, 26(13), 2503.
[1] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[2] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[3] 李霖, 张旭, 曲飏, 郑维, 刘文娟, 张学斌. 静电纺丝技术与装置的研究进展[J]. 材料导报, 2019, 33(z1): 89-93.
[4] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
[5] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[6] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[7] 裴梓帆, 王雪, 唐寅涵, 段皓然, 崔升. 磁性气凝胶材料的应用研究进展[J]. 材料导报, 2019, 33(z1): 470-475.
[8] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[9] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[10] 王盼, 童领, 周志文, 杨杰, 王茺, 陈安然, 王荣飞, 孙韬, 杨宇. 金属辅助化学刻蚀法制备硅纳米线的研究进展[J]. 材料导报, 2019, 33(9): 1466-1474.
[11] 余江滔, 田力康, 王义超, 刘柯柯. 具有超高延性的再生微粉水泥基复合材料的力学性能[J]. 材料导报, 2019, 33(8): 1328-1334.
[12] 李茂源, 卢林, 戴珍, 洪义强, 陈为为, 张玉平, 乔英杰. 玻璃微珠和ZrB2改性石英酚醛复合材料的耐烧蚀性能[J]. 材料导报, 2019, 33(8): 1302-1306.
[13] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[14] 高欣, 韩全青, 张恒, 陈克利. 纤维素羧酸钠基半互穿高吸水凝胶的温控溶胀效果[J]. 材料导报, 2019, 33(8): 1416-1421.
[15] 杨帆, 马建中, 鲍艳. 纳米纤维素及其在水凝胶中的研究进展[J]. 材料导报, 2019, 33(7): 1227-1233.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed