Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (7): 1122-1128    https://doi.org/10.11896/j.issn.1005-023X.2018.07.012
  材料综述 |
声发射技术在纤维增强复合材料损伤检测和破坏过程分析中的应用研究进展
黄展鸿, 黄春芳, 张鉴炜, 江大志, 鞠苏
国防科学技术大学空天科学学院,长沙 410073
Acoustic Emission Technique for Damage Detection and Failure Process Determination of Fiber-reinforced Polymer Composites: an Application Review
HUANG Zhanhong, HUANG Chunfang, ZHANG Jianwei, JIANG Dazhi, JU Su
College of Aeronautics and Astronautics, National University of Defense Technology, Changsha 410073
下载:  全 文 ( PDF ) ( 1513KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 声发射作为一种无损检测技术,具有主动性、几何形状不敏感性、即时性和特征性等优点。声发射技术通过建立复合材料损伤和破坏特征与声发射信号间的关联,分辨复合材料随加载过程的各种失效模式,结合加载过程中的应力应变曲线,从而获得失效机制。本文对声发射检测技术在纤维增强复合材料研究中的应用和分析方法进行了综述,并对其在复合材料领域的应用趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄展鸿
黄春芳
张鉴炜
江大志
鞠苏
关键词:  声发射技术  纤维增强复合材料  信号分析  失效模式  损伤    
Abstract: Acoustic emission (AE), a non-destructive testing technique, has advantages such as activeness, insensitivity to geometry of samples, immediacy and characteristic, etc. By establishing the links between composite material’s failure features and the AE signals, determining each failure mode of the composites in loading process, and also involving the stress-strain curves, this technique can obtain the failure mechanisms of the composites. The present paper reviews the application and analysis methodology of the AE technique in fiber reinforced polymer composites, and sketches out the future trends and prospect.
Key words:  acoustic emission    fiber-reinforced composite    signal analysis    failure mode    damage
出版日期:  2018-04-10      发布日期:  2018-05-11
ZTFLH:  TN95  
基金资助: 国家自然科学基金(11202231;U1537101)
通讯作者:  江大志:通信作者,男,1963年生,博士,教授,博士研究生导师, 研究方向为纳米聚合物基复合材料 E-mail:jiangdz@nudt.edu.cn   
作者简介:  黄展鸿:男,1994年生,硕士研究生, 研究方向为聚合物基复合材料 E-mail:Johnnywong5321@163.com
引用本文:    
黄展鸿, 黄春芳, 张鉴炜, 江大志, 鞠苏. 声发射技术在纤维增强复合材料损伤检测和破坏过程分析中的应用研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1122-1128.
HUANG Zhanhong, HUANG Chunfang, ZHANG Jianwei, JIANG Dazhi, JU Su. Acoustic Emission Technique for Damage Detection and Failure Process Determination of Fiber-reinforced Polymer Composites: an Application Review. Materials Reports, 2018, 32(7): 1122-1128.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.07.012  或          https://www.mater-rep.com/CN/Y2018/V32/I7/1122
1 刘贵民,马丽丽.无损检测技术[M].北京:国防工业出版社,2010:1.
2 Zhou W, Tian X, Zhang T, et al. Acoustic emission attenuation and source location of glass fiber composites for wind turbine blades[J].Journal of Hebei University(Natural Science Edition),2012,32(1):100(in Chinese).
周伟,田晓,张亭,等.风电叶片玻璃钢复合材料声发射衰减与源定位[J].河北大学学报(自然科学版),2012,32(1):100.
3 杨明纬.声发射检测[M].北京:机械工业出版社,2005:1.
4 Yan S, Lu X M, Zeng T. Low-velocity impact and residual compressive properties of composite laminates based on AE[J].Journal of Harbin University of Science and Technology,2014,19(1):112(in Chinese).
严实,陆夏美,曾涛.复合材料层板冲击后剩余压缩性能声发射分析[J].哈尔滨理工大学学报,2014,19(1):112.
5 Haar A. Zur theorie der orthogonalen funktionen-systeme[J].Mathe-matische Annalen,1910,69:331.
6 Guo H J, Zhang Y T, He C X.The extraction of weak signal based on wavelet analysis[J].Light Industry Science and Technology,2016(2):65(in Chinese).
郭会娟,张永涛,何春霞.基于小波分析的微弱信号的提取[J].轻工科技,2016(2):65.
7 Yang J B, Wang Y, Gao H, et al. Application of wavelet transform to process the arrival time of acoustic emission waves[J].Nondestructive Testing,2001,23(11):482(in Chinese).
杨建波,王阳,高虹,等.小波变换用于声发射波波达时间的研究[J].无损检测,2001,23(11):482.
8 Zhang T H, Zhang H P, Yan X. Application of wavelet analysis in study of acoustic emission signal for composite inspection[J].Fiber Reinforced Plastics/Composites,2007(1):46(in Chinese).
张同华,张慧萍,晏雄.小波分析在复合材料声发射信号特征研究中的应用[J].玻璃钢/复合材料,2007(1):46.
9 Al-Jumaili S K, Holford K M, Eaton M, et al. Classification of acoustic emission data from buckling test of carbon fibre panel using unsupervised clustering techniques[J].Structural Health Monitoring,2015,14(3):241.
10Nielsen A. Acoustic emission source based on pencil lead breaking[J].The Danish Welding Institute,Publication,1980,80:15.
11Fotouhi M, Suwarta P, Jalalvand M, et al. Detection of fibre fracture and ply fragmentation in thin-ply UD carbon/glass hybrid laminates using acoustic emission[J].Composites Part A Applied Science and Manufacturing,2016,86:66.
12Arumugam V P, Sidharth A A, Santulli C. Failure modes characte-rization of impacted carbon fibre reinforced plastics laminates under compression loading using acoustic emission[J].Composite Mate-rials,2014,48(28):3457.
13 Pashmforoush F, Khamedi R, Fotouhi M, et al. Damage classification of sandwich composites using acoustic emission technique and k-means genetic algorithm[J].Journal of Nondestructive Evaluation,2014,33:481.
14 Li L, Lomov S V, Xiong Y. Correlation of acoustic emission with optically observed damage in a glass/epoxy woven laminate under tensile loading[J].Composite Structures,2015,123:45.
15 Yang B L, Zhang T H, Zhang H P, et al. Damage mechanisms analysis of UHMWPE/LDPE composites based on the use of pattern re-cognition techniques on acoustic emission signals[J].Acta Materiae Compositae Sinica,2008,25(2):35(in Chinese).
杨璧玲,张同华,张慧萍,等.基于声发射信号模式识别的UHMWPE/LDPE复合材料损伤机制分析[J].复合材料学报,2008,25(2):35.
16 Aslan M. Investigation of damage mechanism of flax fibre LPET commingled composites by acoustic emission[J].Composite Part B Engineering,2013,54:289.
17 Godin N, Huguet S, Gaertner R. Integration of the Kohonen’s self-organizing map and k-means algorithm for the segmentation of the AE date collected during tensile tests on cross-ply composites[J].NDT&E International,2005,38:299.
18 Carvelli V, D’Ettorre A, Lomov S V. Acoustic emission and damage mode correlation in textile reinforced PPS composites[J].Composite Structures,2017,163:399.
19 Li Y, Lin D, Chen W, et al. Application of wet winding resin[J].Aerospace Materials & Technology,2009,39(4):22(in Chinese).
黎昱,林大庆,陈维强,等.湿法缠绕树脂的应用研究[J].宇航材料工艺,2009,39(4):22.
20陈祥宝.聚合物基复合材料手册[M].北京:化学工业出版社,2004:1.
21Fotouhi M, Saeedifar, M Sadeghi S, et al. Investigation of the da-mage mechanisms for mode I delamination growth in foam core sandwich composites using acoustic emission[J].Structural Health Monitoring,2015,14:265.
22Pashmforoush F, Fotouhi M, Ahmadi M. Acoustic emission-based damage classification of glass/polyester composites using harmony search k-means algorithm[J].Journal of Reinforced Plastics and Composites,2012,31(10):671.
23 Fotouhi M, Sadeghi S, Jalalvand M, et al. Analysis of the damage mechanisms in mixed-mode delamination of glass/epoxy composites using acoustic emission data clustering[J].Thermoplastic Composite Materials,2015,1:44.
24 EI-Abbassi F E, Assarar M, Ayad R, et al. Effect of alkali treatment on Alfa fibre as reinforcement for polypropylene based eco-composites:Mechanical behavior and water ageing[J].Composite Structures,2015,133:451.
25 Wang X G, Yang N J, Long X H, et al. Research of failure me-chanism of T700/epoxy composite’s tensile test[J].Non Destructive Testing,2011,35(6):22(in Chinese).
王新刚,阳能军,龙宪海,等.T700/环氧复合材料拉伸损伤机理声发射实验研究[J].无损探伤,2011,35(6):22.
26 Lu C, Ding P, Chen Z H, et al. Damage behavior of carbon-cloth/epoxy resin composite in tensile test based on acoustic emission[J].Failure Analysis and Prevention,2012,7(1):15(in Chinese).
卢超,丁鹏,陈振华,等.不同拉伸速度下的碳布/环氧树脂复合材料声发射评价[J].失效分析与预防,2012,7(1):15.
27 Lv Z H, Liu R, Wang Y R, et al. Acoustic emission monitoring and strain analysis of composite materials embedded with delamination under compression load[J].Fiber Reinforced Plastics/Composites,2015,9:24(in Chinese).
吕智慧,刘然,王雅瑞,等.压缩载荷下复合材料分层损伤演化声发射监测及应变分析[J].玻璃钢/复合材料,2015,9:24.
28 Mhalla M M, Bahloul A, Bouraoui C. Analytical models for predicting tensile strength and acoustic emission count of a glass fiber reinforced polyamide using response surface method[J].Journal of Alloys and Compounds,2017,695:2356.
29 Vieille B, Chabchoub M, Bouscarrat D, et al. A fracture mechanics approach using Acoustic Emission Technique to investigate damage evolution in woven-ply thermoplastic structures at temperatures higher than glass transition temperature[J].Composites Part B Engineering,2016,74:1.
30Wang H W, Chang Y H, Lin C L. A novel anatomical short glass fiber reinforced post in an endodontically treated premolar mechanical resistance evaluation using acoustic emission under fatigue testing[J].Journal of the Mechanical Behavior of Biomedical Materials,2017,65:151.
31Michalocová L, Kadlec M. Carbon/epoxy composite delamination analysis by acoustic emission method under various environmental conditions[J].Engineering Failure Analysis,2016,69:88.
32Kumar C S, Arumugam V, Santulli C. Characterization of indentation damage resistance of hybrid composite laminates using acoustic emission monitoring[J].Composites Part B Engineering,2017,111:165.
33 Mohammadi R, Najafabadi M A, Saeedifar M, et al. Correlation of acoustic emission with finite element predicted damages in open-hole tensile laminated composites[J].Composites Part B Engineering,2017,108:427.
34 Doitrand A, Fagiano C, Carrèarrano N. Damage onset modeling in woven composites based on a coupled stess and energy criterion[J].Engineering Fracture Mechanics,2017,169:189.
35 Sorrentino L, Sarasini F, Tirillò J, et al. Damage tolerance assessment of the interface strength gradation in thermoplastic composites[J].Composites Part B Engineering,2017,113:111.
36 Kadi M E, Blom J, Wastiels J, et al. Use of early acoustic emission to evaluate the structural condition and self-healing performance of textile reinforced cements[J].Mechanics Research Communications,2017,81:26.
37 Saeedifar M, Najafabadi M A, Yousefi J, et al. Delamination analysis in composite laminates by means of acoustic emission and bi-li-near/tri-linear cohesive zone modeling[J].Composite Structures,2017,161:505.
38 Shrestha P, Park Y, Kim C G. Low velocity impact localization on composite wing structure using error outlier based algorithm and FBG sensors[J].Composites Part B Engineering,2016,68:1.
39 Yu F M, Okabe Y, Wu Q, et al. A novel method of identifying da-mage types in carbon fiber-reinforced plastic cross-ply laminates based on acoustic emission detection using a fiber-optic sensor[J].Composites Science and Technology,2016,135:116.
[1] 金伟良, 刘振东, 张军. 混凝土梁疲劳致力磁效应及数值模拟方法[J]. 材料导报, 2025, 39(1): 24010127-9.
[2] 冯炜森, 杨成鹏, 贾斐. 复合材料层压板疲劳损伤演化模型的综述与评估[J]. 材料导报, 2024, 38(9): 22100058-11.
[3] 梁艳玲, 霍润科, 宋战平, 穆彦虎, 秋添, 宋子羿. 基于矿物溶解理论的砂岩化学损伤动态模型[J]. 材料导报, 2024, 38(8): 22080206-7.
[4] 孙茂钧, 胡涛, 栾红波, 李茜, 佘祖新, 柏遇合, 王玲, 杨小奎, 周堃. 胶粘剂在湿热环境下的老化行为规律及环境损伤机理[J]. 材料导报, 2024, 38(5): 22090006-6.
[5] 苏三庆, 邓瑞泽, 王威, 易术春, 左付亮, 刘馨为, 李俊廷. 基于金属磁记忆的弯曲工字钢梁的力-磁效应[J]. 材料导报, 2024, 38(4): 22070065-8.
[6] 赵晓燕, 王冬颖, 程从前, 曹铁山, 刘宝军, 姚景文, 赵杰. 利用电化学和显色检测法分级评估316L不锈钢钝化膜完整性[J]. 材料导报, 2024, 38(3): 22050337-5.
[7] 毕钰, 秦拥军, 阳毅恒, 陈奇, 杨亮. 金属波纹管浆锚连接预制钢筋混凝土剪力墙声发射性能研究[J]. 材料导报, 2024, 38(24): 23100230-9.
[8] 陈宇良, 王双翼, 李洪, 李培泽. 复杂应力状态下玻璃纤维再生混凝土损伤演变及应力-应变本构关系研究[J]. 材料导报, 2024, 38(24): 23080024-9.
[9] 邓云飞, 赵鑫, 王中山, 冯正兴. 鞘翅仿生铝合金波纹夹芯结构冲击失效机理及吸能特性研究[J]. 材料导报, 2024, 38(24): 22080103-8.
[10] 卢慧扬, 林金保, 刘惠民, 王炳权, 李一豪, 陈巽. 镁合金轧制边裂损伤模型的研究进展[J]. 材料导报, 2024, 38(24): 23110051-8.
[11] 张若楠, 韦朋余, 王珂, 曾庆波, 王连, 宋培龙. 海水环境下船用高强钢腐蚀疲劳损伤行为研究[J]. 材料导报, 2024, 38(23): 23090176-6.
[12] 刘亚敏, 韩旭晖, 高晨光, 钟国亮. 全程老化沥青中温抗疲劳性能及预测模型研究[J]. 材料导报, 2024, 38(21): 23070147-6.
[13] 肖民, 吴娟, 奚健杨, 李方贤, 祝雯, 韦江雄. 基于Mazars损伤模型评价不同粗糙度机制砂砂浆的抗裂性能[J]. 材料导报, 2024, 38(21): 23060117-6.
[14] 陈学锋, 云广琨, 吴特伟, 闫力辉, 颜川奇. 温拌沥青胶结料与混合料粘结性能研究[J]. 材料导报, 2024, 38(20): 23040041-7.
[15] 毛鹏燕, 赵晖, 李宏达, 邰凯平. 碳纳米管-铜复合薄膜材料的抗辐照损伤性能研究[J]. 材料导报, 2024, 38(19): 22120135-6.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed