Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (7): 1114-1121    https://doi.org/10.11896/j.issn.1005-023X.2018.07.011
  材料综述 |
伽马射线辐照改性聚丙烯腈原丝及聚丙烯腈基碳纤维的研究进展
冯婷婷, 刘梁森, 马天帅, 徐志伟, 李静, 傅宏俊, 匡丽赟, 李英琳
天津工业大学纺织学院,先进纺织复合材料教育部重点实验室,天津 300387
Enhancing Polyacrylonitrile Precursor Fibers and Polyacrylonitrile-based Carbon Fibers via Gamma-irradiation: a Review
FENG Tingting, LIU Liangsen, MA Tianshuai, XU Zhiwei, LI Jing, FU Hongjun, KUANG Liyun, LI Yinglin
Key Laboratory of Advanced Braided Composites, School of Textiles, Tianjin Polytechnic University, Tianjin 300387
下载:  全 文 ( PDF ) ( 1776KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 聚丙烯腈(PAN)基碳纤维由于性能优异、制备工艺简单,被广泛应用于各产业,但其存在表面化学惰性强、力学性能仍有很大提升空间等问题,为此研究人员提出了多种改性方法。其中,γ射线辐照是一种能够实现碳纤维表面活性和力学性能协同提高的改性方法,并且能够应用于PAN基碳纤维制备(PAN原丝)及其后处理全过程。本文概述了γ辐照对PAN原丝和PAN基碳纤维的微观结构、表界面性能和力学性能等方面的影响,重点总结了γ辐照下PAN原丝分子结构的演化机制,原丝辐照对成品碳纤维力学性能的影响,γ辐照下碳纤维不同微区结构演化和力学性能的关系,展望了未来γ射线辐照改性PAN基碳纤维的发展方向与前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
冯婷婷
刘梁森
马天帅
徐志伟
李静
傅宏俊
匡丽赟
李英琳
关键词:  碳纤维  γ射线辐照  聚丙烯腈纤维  力学性能    
Abstract: The polyacrylonitrile (PAN)-based carbon fibers have found wide application in a diverse variety of industries because of their superb performance and the facile preparation technique, while nevertheless been suffering many problems such as the extreme surface chemical inertness and the imperfect mechanical performance. This urges intensive research endeavors which have bred various modification methods to enhance the PAN-based carbon fibers. Among these methods, the γ-irradiation treatment is effective to achieve the synergetic improvement in both of the surface activities and the mechanical performance, and meanwhile can be applied to the preparation of PAN precursor fibers and the subsequent treatment process. The present paper aims to provide an overview of the γ-irradiation treatment for PAN precursor fibers and PAN-based carbon fibers, from several facets including the induced changes in the fibers’ crystalline structure, surface and interfacial properties, and mechanical properties. We make emphasis on the evolutionary course of the γ-ray-induced cross-linking of PAN precursor fiber molecules, the impact of precursor γ-irradiation to mechanical properties of the final carbon fibers, and the relationship between product’s different microzone structure evolution and mechanical properties under γ-irradiation. The review ends with a delineation of the development direction and the future prospect for this emerging technique.
Key words:  carbon fiber    γ-irradiation    polyacrylonitrile fibers    mechanical performance
出版日期:  2018-04-10      发布日期:  2018-05-11
ZTFLH:  TQ342+.31  
基金资助: 国家自然科学基金(U1533123;11575126);天津市自然基金(16JCYBJC17700)
通讯作者:  徐志伟:通信作者,男,教授,博士研究生导师,研究方向为碳纤维复合材料结构设计 E-mail:xuzhiwei@tjpu.edu.cn   
作者简介:  冯婷婷:女,1992年生,硕士研究生,研究方向为γ辐照碳纤维改性 E-mail:571052694@qq.com
引用本文:    
冯婷婷, 刘梁森, 马天帅, 徐志伟, 李静, 傅宏俊, 匡丽赟, 李英琳. 伽马射线辐照改性聚丙烯腈原丝及聚丙烯腈基碳纤维的研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1114-1121.
FENG Tingting, LIU Liangsen, MA Tianshuai, XU Zhiwei, LI Jing, FU Hongjun, KUANG Liyun, LI Yinglin. Enhancing Polyacrylonitrile Precursor Fibers and Polyacrylonitrile-based Carbon Fibers via Gamma-irradiation: a Review. Materials Reports, 2018, 32(7): 1114-1121.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.07.011  或          https://www.mater-rep.com/CN/Y2018/V32/I7/1114
1 Zhang J J. Market and development of carbon fiber at home and abroad[J].Chemical Techno-Economics,2005,23(4):12(in Chinese).
张家杰.国内外碳纤维生产现状及发展趋势[J].化工技术经济,2005,23(4):12.
2 Lou Y F. The new situation of carbon fiber and new technology[J].New Carbon Materials,1995(4):13(in Chinese).
罗益锋.炭纤维的新形势与新技术[J].新型炭材料,1995(4):13.
3 Kobets L P, Deev I S. Carbon fibers:Structure and mechanical pro-perties of carbon fibers[J].Carbon,1998,36(4):345.
4 张开.粘合与密封材料[M].北京:化学工业出版社,1996.
5 Yu M, Xu Y, Wang C, et al. Heredity and difference of multiple-scale microstructures in PAN-based carbon fibers and their precursor fibers[J].Journal of Applied Polymer Science,2012,125(4):3159.
6 Jiang J, Yao X, Xu C, et al. Influence of electrochemical oxidation of carbon fiber on the mechanical properties of carbon fiber/graphene oxide/epoxy composites[J].Composites:Part A,2017,95:248.
7 Sun Y H T. Wettability modification of polyacrylonitrile (PAN)-based high modulus carbon fibers with epoxy resin by low temperature plasma[J].Journal of Adhesion,2013,89(3):192.
8 Xu Z, Huang Y, Min C, et al. Effect of γ-ray radiation on the polya-crylonitrile-based carbon fibers[J].Radiation Physics & Chemistry,2010,79(8):839.
9 Shin H K, Park M, Kim H Y, et al. An overview of new oxidation methods for polyacrylonitrile-based carbon fibers[J].Carbon Letters,2015,16(1):11.
10Jiao M L, Yu L W, Xiao R, et al. Behavior of electro responsive HPAN/SPI hydrogel fibers under an electric stimulus[J].Chinese Journal of Materials Research,2005,19(6):663(in Chinese).
焦明立,俞力为,肖茹,等.水解聚丙烯腈/大豆分离蛋白凝胶纤维的电刺激性能[J].材料研究学报,2005,19(6):663.
11Zhang Y H. Production technology of fire-retardant polyacrylonitrile fiber[J].China Textile Leader,2002(2):23(in Chinese).
张玉海.阻燃聚丙烯腈纤维生产技术[J].现代纺织技术,2002(2):23.
12Tan L, Wan A. Structural changes of polyacrylonitrile precursor fiber induced by γ-ray irradiation[J].Materials Letters,2011,65(19):3109.
13 Ji J Q. The effect of γ-ray irradiation of polyacrylonitrile fibers on oxidation and carbonization processes[D].Shanghai:Donghua University,2013(in Chinese).
季加强.辐照改性聚丙烯腈纤维对预氧化碳化的影响[D].上海:东华大学,2013.
14 Gao Y J. Structure of irradiated PAN original fiber and the influence on pre-oxidation process[D].Beijing:Beijing University of Chemical Technology,2015(in Chinese).
高益军.辐照PAN原丝结构及其对预氧化进程的影响[D].北京:北京化工大学,2015.
15 Liu W, Wang M, Xing Z, et al. Radiation-induced crosslinking of polyacrylonitrile fibers and the subsequent regulative effect on the preoxidation process[J].Radiation Physics & Chemistry,2012,81:622.
16 Zhao W, Yukio Yamamoto A, Tagawa S. Regulation of the thermal reactions of polyacrylonitrile by γ-irradiation[J].Chemistry of Materials,1999,11(4):1030.
17 Zhou L, Lu Y, Zhao W, et al. Effects of gamma ray irradiation on poly(acrylonitrile-co-methyl acrylate) fibers[J].Polymer Degradation & Stability,2015,128:149.
18 Zhao W, Lu Y, Jiang J, et al. The effect of γ-ray irradiation on the microstructure and thermal properties of polyacrylonitrile fibers[J].RSC Advances,2015,5(30):23508.
19 Ji J Q,Lv Y G,Zhao W Z. Effect of γ-ray irradiation on polyacrylonitrile precursor and its preoxidation process[J].Synthetic Fiber Industry,2013,36(6):1(in Chinese).
季加强,吕永根,赵卫哲.γ射线辐照对聚丙烯腈原丝及其预氧化反应的影响[J].合成纤维工业,2013,36(6):1.
20Liu S, Liu R, Han K, et al. Influence of γ-ray irradiation on structure and properties of PAN precursor fibers[J].Polymer Engineering & Science,2016,56(11):1313.
21Liu W H,Wang M H,Zhang W F, et al. Effect of γ-ray irradiation on the pre-oxidation of polyacrylonitrile fibers[J].Polymer Materials Science & Engineering,2015(5):51(in Chinese).
刘伟华,王谋华,张文发,等.γ射线辐照处理对聚丙烯腈纤维预氧化反应的影响[J].高分子材料科学与工程,2015(5):51.
22Tarakanov B M. Effect of γ-radiation on the structure and thermal properties of polyacrylonitrilefibres[J].Fibre Chemistry,1996,30(3):123.
23 Zhai J. Effect of PAN precursor modification on the structure and performance of preoxidized fibers[D].Shanghai:Donghua University,2011(in Chinese).
翟佳.原丝改性对PAN预氧化纤维结构和性能的影响[D].上海:东华大学,2011.
24 Zhao W, Lu Y, Zhou L, et al. Effects on the oriented structure and mechanical properties of carbon fibers by pre-irradiating polyacrylonitrile fibers with γ ray[J].Journal of Materials Science,2016,51(15):7073.
25 Li J Q, Huang Y D, Wang Z, et al. The effect on carbon fiber surface structure and tensile strength irradiated by γ-ray[J].Journal of Aeronautical Materials,2005,25(6):52(in Chinese).
李峻青,黄玉东,王卓,等.γ-射线辐照对碳纤维表面结构以及强度的影响[J].航空材料学报,2005,25(6):52.
26 Xiao H, Lu Y, Wang M, et al. Effect of gamma-irradiation on the mechanical properties of polyacrylonitrile-based carbon fiber[J].Carbon,2013,52(2):427.
27 Xu Z, Huang Y, Zhang C, et al. Influence of rare earth treatment on interfacial properties of carbon fiber/epoxy composites[J].Materials Science & Engineering A,2007,444(1):170.
28 Li B, Feng Y, Qian G, et al. The effect of gamma ray irradiation on PAN-based intermediate modulus carbon fibers[J].Journal of Nuc-lear Materials,2013,443(1):26.
29 Cataldo F, Cataldo F. A Raman study on radiation-damaged graphite by γ-rays[J].Carbon,2000,38(4):634.
30Liu L, Wu F, Yao H, et al. Investigation of surface properties of pristine and γ-irradiated PAN-based carbon fibers: Effects of fiber instinct structure and radiation medium[J].Applied Surface Science,2015,337(11):241.
31Xu Y J, Li J Q, Jiang L L, et al. The effect of carbon fiber after γ-ray irradiation on the mechanical properties of its composite[J].Synthetic Materials Aging and Application,2006,35(4):31(in Chinese).
徐用军,李峻青,姜琳琳,等.γ-射线辐照碳纤维对其复合材料力学性能的影响[J].合成材料老化与应用,2006,35(4):31.
32Xu Z, Huang Y, Zhang C, et al. Effect of γ-ray irradiation grafting on the carbon fibers and interfacial adhesion of epoxy composites[J].Composites Science & Technology,2007,67(15-16):3261.
33 Zhang H, Zhang Z. Comparison of short carbon fibre surface treatments on epoxy composites: Ⅱ. Enhancement of the wear resistance[J].Composites Science & Technology,2004,64(13-14):2021.
34 Kalantar J, Drzal L T. The bonding mechanism of aramid fibres to epoxy matrices[J].Journal of Materials Science,1990,25(10):4186.
35 Li J, Huang Y, Xu Z, et al. High-energy radiation technique treat on the surface of carbon fiber[J].Materials Chemistry & Physics,2005,94(2-3):315.
36 Tiwari S, Bijwe J, Panier S. Gamma radiation treatment of carbon fabric to improve the fiber-matrix adhesion and tribo-performance of composites[J].Wear,2011,271(9-10):2184.
37 Tiwari S, Bijwe J, Panier S. Polyetherimide composites with gamma irradiated carbon fabric: Studies on abrasive wear[J].Wear,2011,270(9-10):688.
38 Ma H Y, Huang Y D, Zhang Z Q, et al. Effect of Co60 gamma ray irradiation for carbon fibre on interfacial properties in epoxy resin composites[J].Materials Science &Technology,2002,18(12):1585.
39 Ma H Y, Huang Y D, Zhang Z Q. The effect of γ-ray radiating carbon fiber on interfacial property of composite[J].Journal of Materials Engineering,2000(4):26(in Chinese).
马恒怡,黄玉东,张志谦.碳纤维γ射线辐照处理对其复合材料界面性能的影响[J].材料工程,2000(4):26.
40Sui X, Xu Z, Hu C, et al. Microstructure evolution in γ-irradiated carbon fibers revealed by a hierarchical model and Raman spectra from fiber section[J].Composites Science & Technology,2016,130:46.
41Bennett S C, Johnson D J. Electron-microscope studies of structural heterogeneity in PAN-based carbon fibres[J].Carbon,1979,17:25.
42Guo X, Zhang K, Fan Z, et al. Study on microstructure of transition zone and its strong contrast of single T700 carbon fibers[J].Applied Surface Science,2017,406:274.
43 Guo X, Cheng Y, Fan Z, et al. New insights into orientation distribution of high strength polyacrylonitrile-based carbon fibers with skin-core structure[J].Carbon,2016,109:444.
44 Oku T, Imamura Y, Kurumada A, et al. Effect of neutron irradiation on the microstructures and tensile properties of different carbon fibers[J].Science Reports of the Research Institutes,1997,45:63.
45 Li J Q, Xu Y J, Zhang H Z. Effect of γ-ray irradiation on the mechanical property of carbon fiber reinforced composite[J].Synthetic Fiber,2006,35(11):20(in Chinese).
李峻青,徐用军,张怀志.γ-射线辐照对碳纤维及其复合材料力学性能的影响[J].合成纤维,2006,35(11):20.
[1] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[2] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[3] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[4] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[5] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[6] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[7] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[8] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[9] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[10] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[11] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[12] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[13] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[14] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[15] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed