Please wait a minute...
材料导报  2024, Vol. 38 Issue (21): 23060117-6    https://doi.org/10.11896/cldb.23060117
  无机非金属及其复合材料 |
基于Mazars损伤模型评价不同粗糙度机制砂砂浆的抗裂性能
肖民1, 吴娟1, 奚健杨1, 李方贤1, 祝雯2, 韦江雄1,*
1 华南理工大学材料科学与工程学院,广州 510640
2 广州市建筑科学研究院有限公司,广州 510440
Assessment of Crack Resistance of Mortars Prepared from Manufactured Sands with Different Roughness Based on the Mazars Damage Model
XIAO Min1, WU Juan1, XI Jianyang1, LI Fangxian1, ZHU Wen2, WEI Jiangxiong1,*
1 School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
2 Guangzhou Institute of Building Science Co., Ltd, Guangzhou 510440, China
下载:  全 文 ( PDF ) ( 8255KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用8字模拉伸试验和平板约束开裂试验,结合数字图像相关法(DIC)测试了含不同粗糙度机制砂水泥砂浆的早期拉伸能力和非均匀变形。基于砂浆Mazars损伤模型,计算分析了砂浆的等效拉应变,统计了其中的非均匀变形和损伤场分布。研究发现,机制砂粗糙度增大能提高砂浆早期的拉伸能力,同时降低砂浆整体的收缩变形;砂浆由收缩变形引起的损伤主要分散在约束相周围,以砂浆-约束相界面为起点向砂浆发散,越靠近界面其损伤程度越大。综合考虑损伤面积和等效拉应变的影响,计算了砂浆的损伤因子,发现机制砂粗糙度增加到1.51时,损伤因子降低为0.004 3ε,约束相间隙浆体的损伤区域基本消失,砂浆收缩开裂的风险下降。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖民
吴娟
奚健杨
李方贤
祝雯
韦江雄
关键词:  机制砂  拉伸强度  极限拉应变  非均匀变形  损伤    
Abstract: The early tensile strength and non-uniform deformation of cement mortar containing manufactured sands with different roughness levels were investigated by the 8-shaped tension test and plate-constrained cracking test, combined with digital image correlation (DIC) technique. Based on the Mazars damage model, the equivalent tensile strain in mortar was calculated,and the distribution of non-uniform stress and damage field was statistically characterized. It was found that increasing the roughness of manufactured sand resulted in improved the early tensile strength of the mortar, accompanied by a reduction in overall shrinkage deformation. The damage induced by shrinkage deformation was primarily concentrated around the constrained phase, and propagating towards the mortar from the mortar-constrained phase interface. As the damage neared the interface between the mortar and restraining phase, the severity of the damage escalated. The damage index calculated form the damage area and the equivalent tensile strain in mortar. It was found that when the roughness of the manufactured sand increased to 1.51, the damage index decreased to 0.004 3ε, and the damage area in the interfacial mortar between the restraining phases nearly disappeared, lead to low micro-cracking risk in the mortar.
Key words:  manufactured sand    tensile strength    ultimate strain    non-uniform deformation    damage
出版日期:  2024-11-10      发布日期:  2024-11-11
ZTFLH:  TU525  
基金资助: 广州地铁十号线机制砂混凝土应用技术研究(HT211634)
通讯作者:  *韦江雄,华南理工大学材料科学与工程学院教授、博士研究生导师。1998年于武汉理工大学材料科学与工程专业本科毕业,2001年于武汉理工大学材料科学与工程专业硕士毕业,2004年于中国建筑材料科学研究院材料科学与工程专业博士毕业。目前主要从事新型胶凝材料、高性能和超高性能水泥混凝土、水泥混凝土的计算与模拟、建筑材料的耐久性等方面的研究工作。发表论文230余篇,授权专利70余件。jxwei@scut.edu.cn   
作者简介:  肖民,2018年6月、2021年6月分别于广西大学和华南理工大学获得工学学士学位和硕士学位。现为华南理工大学材料科学与工程学院博士研究生,在韦江雄教授的指导下进行研究。目前主要研究领域为混凝土的非均匀应力应变。
引用本文:    
肖民, 吴娟, 奚健杨, 李方贤, 祝雯, 韦江雄. 基于Mazars损伤模型评价不同粗糙度机制砂砂浆的抗裂性能[J]. 材料导报, 2024, 38(21): 23060117-6.
XIAO Min, WU Juan, XI Jianyang, LI Fangxian, ZHU Wen, WEI Jiangxiong. Assessment of Crack Resistance of Mortars Prepared from Manufactured Sands with Different Roughness Based on the Mazars Damage Model. Materials Reports, 2024, 38(21): 23060117-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23060117  或          http://www.mater-rep.com/CN/Y2024/V38/I21/23060117
1 Lu L, Yang Z, Lin Y, et al. Construction and Building Materials, 2023, 376, 131031.
2 Zhou H, Ge C, Chen Y, et al. Frontiers in Earth Science, 2023, 11, 1140038.
3 Ding X, Li C, Xu Y, et al. Construction and Building Materials, 2016, 108, 67.
4 Fu T, Liang J L, Lan Y F, et al. Iranian Journal of Science and Techno-logy, 2022, 46, 4255
5 Ren Q, Tao Y, Jiao D, et al. Cement and Concrete Composites, 2021, 122, 104163.
6 Ma Z, Shen J, Wang C, et al. Cement and Concrete Composites, 2022, 132, 104629.
7 Guan M, Wang G, Wang Y, et al. Construction and Building Materials, 2021, 269, 121289.
8 Su D, Yan W M. Powder Technology, 2018, 323, 8.
9 Estephane P, Garboczi E J, Bullard J W, et al. Cement and Concrete Composites, 2019, 97, 125.
10 Liang H, Shen Y, Xu J, et al. Frontiers in Physics, 2021, 9, 744319.
11 Bertelsen I M G, Kragh C, Cardinaud G, et al. Cement and Concrete Research, 2019, 123, 105761.
12 Kayondo M, Combrinck R, Boshoff W P. Construction and Building Materials, 2019, 225, 886.
13 Combrinck R, Boshoff W P. Magazine of Concrete Research, 2013, 65(8), 486.
14 Rao G A, Prasad B K R. Cement and Concrete Research, 2002, 32(2), 253.
15 Mazars J. Engineering Fracture Mechanics, 1986, 25(5-6), 729.
16 Gao P, Chen Y, Huang H, et al. Materials & Design, 2020, 196, 109128.
[1] 冯炜森, 杨成鹏, 贾斐. 复合材料层压板疲劳损伤演化模型的综述与评估[J]. 材料导报, 2024, 38(9): 22100058-11.
[2] 梁艳玲, 霍润科, 宋战平, 穆彦虎, 秋添, 宋子羿. 基于矿物溶解理论的砂岩化学损伤动态模型[J]. 材料导报, 2024, 38(8): 22080206-7.
[3] 汪愿, 孙运刚, 符彬, 刘文浩, 宣善勇, 刘鹏. 基于VARI工艺的碳纤维复合材料快速修理飞机铝合金裂纹的研究[J]. 材料导报, 2024, 38(6): 22020135-6.
[4] 孙茂钧, 胡涛, 栾红波, 李茜, 佘祖新, 柏遇合, 王玲, 杨小奎, 周堃. 胶粘剂在湿热环境下的老化行为规律及环境损伤机理[J]. 材料导报, 2024, 38(5): 22090006-6.
[5] 苏三庆, 邓瑞泽, 王威, 易术春, 左付亮, 刘馨为, 李俊廷. 基于金属磁记忆的弯曲工字钢梁的力-磁效应[J]. 材料导报, 2024, 38(4): 22070065-8.
[6] 赵晓燕, 王冬颖, 程从前, 曹铁山, 刘宝军, 姚景文, 赵杰. 利用电化学和显色检测法分级评估316L不锈钢钝化膜完整性[J]. 材料导报, 2024, 38(3): 22050337-5.
[7] 刘亚敏, 韩旭晖, 高晨光, 钟国亮. 全程老化沥青中温抗疲劳性能及预测模型研究[J]. 材料导报, 2024, 38(21): 23070147-6.
[8] 陈学锋, 云广琨, 吴特伟, 闫力辉, 颜川奇. 温拌沥青胶结料与混合料粘结性能研究[J]. 材料导报, 2024, 38(20): 23040041-7.
[9] 许应杰, 陈红鸟. 长龄期机制砂再生骨料混凝土的断裂参数和断裂过程区[J]. 材料导报, 2024, 38(19): 23040205-10.
[10] 毛鹏燕, 赵晖, 李宏达, 邰凯平. 碳纳米管-铜复合薄膜材料的抗辐照损伤性能研究[J]. 材料导报, 2024, 38(19): 22120135-6.
[11] 徐东, 金天, 王朋波, 程战. Gd改性Ni-Cr钎料钎焊金刚石组织和性能研究[J]. 材料导报, 2024, 38(19): 23070245-5.
[12] 张彪, 刘家招, 杨鑫三, 孙宇萱. 基于XFEM的汽车铝合金断裂行为表征[J]. 材料导报, 2024, 38(19): 22100262-5.
[13] 王家滨, 张凯峰, 郑康华, 符梦涛. 完全浸泡再生混凝土Mg2+-SO42--Cl-侵蚀耐久性损伤规律与机理[J]. 材料导报, 2024, 38(18): 23050184-11.
[14] 邱飒蔚, 雷贝, 叶拓, 张越, 蒋家传, 王涛. 铝合金自冲铆疲劳性能及寿命预测[J]. 材料导报, 2024, 38(18): 24030108-7.
[15] 王家滨, 车志豪, 侯泽宇, 范一杰, 牛荻涛. 部分浸泡再生混凝土复合盐侵蚀微观特征与损伤演化[J]. 材料导报, 2024, 38(16): 22070227-12.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed