Please wait a minute...
材料导报  2025, Vol. 39 Issue (24): 24120102-8    https://doi.org/10.11896/cldb.24120102
  金属与金属基复合材料 |
辐照对AlxCrMoNbZr高熵合金涂层微观结构和力学性能的影响研究
杨佳奇1, 李海军1, 李皓云1, 廉杰1, 王小维1, 宋祎鹏1, 张瑞娟1, 杨帆1, 杨吉军2,*
1 中核集团质谱分析技术重点实验室,四川 乐山 614200
2 四川大学原子核科学技术研究所,成都 610065
Irradiation Response of Microstructure and Mechanical Properties of AlxCrMoNbZr High Entropy Alloy Coatings
YANG Jiaqi1, LI Haijun1, LI Haoyun1, LIAN Jie1, WANG Xiaowei1, SONG Yipeng1, ZHANG Ruijuan1,YANG Fan1, YANG Jijun2,*
1 CNNC Key Laboratory of Mass Spectrometry, Leshan 614200, Sichuan, China
2 Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610065, China
下载:  全 文 ( PDF ) ( 54254KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 福岛事故表明,开发综合性能更优异的压水堆燃料包壳材料是十分必要的。涂层技术可在不对现有堆芯燃料系统做出巨大改动的情况下提升包壳性能,而高熵合金涂层因其优异的性能被认作为解决方案之一。强辐照场下的辐照损伤效应是材料退化甚至失效的关键因素之一。本工作使用磁控溅射的方法在Zr-2合金上制备了AlxCrMoNbZr(Al原子分数分别为0%、5%、10%、20%、40%)高熵合金涂层,并在室温下用6 MeV的Au2+对其进行辐照。结果表明,辐照后涂层的粗糙度降低。辐照后0%Al的涂层中出现了大量纳米晶以及位错和空位团等缺陷,但并未观察到明显的元素偏析现象,其硬度比未辐照前提升71.6%;辐照后Al含量为5%的涂层在辐照峰值损伤区域处出现纳米晶,硬度比未辐照前提升43.6%;而其他三种涂层在辐照后仍保持非晶态,但原子排列的无序程度降低,硬度提升率分别为21.1%、12.5%、5.8%。这些结果揭示了Al含量的提升可以明显增加AlxCrMoNbZr涂层的抗辐照性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨佳奇
李海军
李皓云
廉杰
王小维
宋祎鹏
张瑞娟
杨帆
杨吉军
关键词:  高熵合金涂层  离子辐照  微观结构演变  力学性能    
Abstract: The Fukushima accident has highlighted the necessity for the development of fuel cladding materials for pressurized water reactors (PWRs) with superior overall performance. Coating technology can enhance cladding performance without significant modifications to the existing core fuel system, and high-entropy alloy (HEA) coatings are recognized as one of the solutions due to their exceptional properties. The radiation da-mage effect in intense irradiation fields is one of the key factors leading to material degradation and even failure. In this work, high-entropy alloy coatings of AlxCrMoNbZr (with Al atomic percentages of 0%, 5%, 10%, 20%, and 40%) were prepared on Zr-2 alloy using the magnetron sputtering method, and they were irradiated with 6 MeV Au2+ at room temperature. The results indicate that the roughness of the coatings decreases after irradiation. The 0% Al coating exhibits a large number of nanocrystals, dislocations, and vacancy clusters after irradiation, but no significant elemental segregation is observed. The hardness of this coating increased by 71.6% compared to its unirradiated state. The 5% Al coating showed nanocrystals near the peak damage region after irradiation, with a 43.6% increase in hardness compared to the unirradiated state. The 10% Al, 20% Al, and 40% Al coatings remained amorphous after irradiation, but the degree of disorder in their atomic arrangements decreased, resulting in hardness increases of 21.1%, 12.5%, and 5.8%, respectively. These findings reveal that an increase in Al content can significantly enhance the radiation resistance of AlxCrMoNbZr coatings.
Key words:  high entropy alloy coating    ion irradiation    microstructure evolution    mechanical property
出版日期:  2025-12-25      发布日期:  2025-12-17
ZTFLH:  TG113  
基金资助: 国家自然科学基金(U2067218)
通讯作者:  *杨吉军,博士,四川大学原子核科学技术研究所研究员、博士研究生导师。目前主要从事反应堆涂层及材料辐照损伤效应等方面的研究工作。jjyang@scu.edu.cn   
作者简介:  杨佳奇,助理工程师,硕士。现工作于中核集团四川红华实业有限公司。目前主要研究领域为材料辐照损伤效应。
引用本文:    
杨佳奇, 李海军, 李皓云, 廉杰, 王小维, 宋祎鹏, 张瑞娟, 杨帆, 杨吉军. 辐照对AlxCrMoNbZr高熵合金涂层微观结构和力学性能的影响研究[J]. 材料导报, 2025, 39(24): 24120102-8.
YANG Jiaqi, LI Haijun, LI Haoyun, LIAN Jie, WANG Xiaowei, SONG Yipeng, ZHANG Ruijuan,YANG Fan, YANG Jijun. Irradiation Response of Microstructure and Mechanical Properties of AlxCrMoNbZr High Entropy Alloy Coatings. Materials Reports, 2025, 39(24): 24120102-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24120102  或          https://www.mater-rep.com/CN/Y2025/V39/I24/24120102
1 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6, 299.
2 Yang J, Wu X, Wu L, et al. Surface and Coatings Technology, 2022, 444, 128656.
3 Miracle D B, Senkov O N. Acta Materialia. 2017, 122, 448.
4 Yang J, Shi K, Zhang W, et al. Corrosion Science, 2021, 187, 109524.
5 Tang C, Stueber M, Seifert H J , et al. Corrosion Reviews, 2017, 35, 141.
6 Zhao S, Liu C, Yang J, et al. Surface and Coatings Technology, 2021, 417, 127228.
7 Xu Q, Guan H Q, Huang S S, et al. Journal of Alloys and Compounds, 2022, 925, 166697.
8 Huang S, Guan H Q, Zhong Z H, et al. Journal of Nuclear Materials, 2022, 561, 153525.
9 Kim J C, Jin-Chul. European Journal of Lipid Science and Technology, 2014, 117, 45.
10 Zhang Y, Jiang W Q, Gokhman A, et al. Journal of Nuclear Materials, 2021, 557, 153292.
11 Lin Y, Yang T, Lang L, et al. Acta Materialia, 2020, 196, 133.
12 Fang Q, Peng J, Chen Y, et al. Mechanics of Materials, 2021, 155, 103744.
13 Chen H H, Zhao Y F, Zhang J Y, et al. International Journal of Plasticity, 2020, 133, 102839.
14 Tang Z, Gao M C, Diao H, et al. Microstructures, and Mechanical Behavior of High-Entropy Alloys Systems, Jom, 2013, 65, 1848.
15 Ogura M, Fukushima T, Zeller R, et al. Journal of Alloys and Compounds, 2017, 715, 454.
16 Yang T, Xia S, Liu S, et al. Materials Science and Engineering:A, 2015, 648, 15.
17 Xin H, Yang J, Zhang W, et al. Surface and Coatings Technology, 2022, 434, 128157.
18 Yang T, Xia S, Liu S, et al. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2015, 648, 15.
19 Ziegler J F, Ziegler M D, Biersack J P. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2010, 268, 1818.
20 Carter J, Fu E G, Martin M, et al. Scripta Materialia, 2009, 61, 265.
21 Mayr S G, Averback R S. Physical Review Letters, 2001, 87(19), 196106.
22 Yang J, Shi K, Chen Q, et al. Surface and Coatings Technology, 2021, 418, 127252.
23 Yang J, Zhang F, Chen Q, et al. Corrosion Science, 2021, 192, 109862.
24 Tan J, Wang G, Liu Z Y, et al. Scientific Reports, 2014, 4, 3879.
25 Carter J, Fu E G, Martin M, et al. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2009, 267(17), 2827.
26 Lu C, Niu L, Chen N, et al. Nature Communications, 2016, 7(1), 13564.
27 Ge G, Chen F, Tang X, et al. Journal of Nuclear Materials, 2022, 563, 153630.
28 Zhang Z, Che P, Zhang J, et al. Advanced Engineering Materials, 2022, 25, 5.
29 Liang Y X, Du J L, Xu C, et al. Intermetallics, 2019, 114, 106608.
30 Lambrecht M, Meslin E, Malerba L, et al. Journal of Nuclear Materials, 2010, 406(1), 84.
31 Shi K, Zhang W, Ning Z, et al. Journal of Alloys and Compounds, 2020, 835, 155360.
32 Liang Y X, Du J L, Xu C, et al. Intermetallics, 2019, 144, 106608.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[3] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[4] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[5] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[6] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[7] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[8] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[9] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[10] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[11] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[12] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[13] 谢昭男, 陈军红, 黄西成, 邱勇. 橡胶的热老化力学性能与本构关系研究进展[J]. 材料导报, 2025, 39(7): 23120036-16.
[14] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[15] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[1] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[2] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[3] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[4] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[8] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed