Please wait a minute...
材料导报  2025, Vol. 39 Issue (24): 24120139-6    https://doi.org/10.11896/cldb.24120139
  金属与金属基复合材料 |
腐蚀产物加速青铜腐蚀的电催化氧还原机理研究
方园1,*, 李钰1, 景嘉哲1, 范仕敏1, 韩润润1, 武文玲1, 罗宏杰1,2, 朱建锋1,*
1 陕西科技大学材料科学与工程学院,文物保护科学与技术学院,地下文物保护材料与技术教育部重点实验室,西安 710021
2 上海大学材料与科学工程学院,上海 200000
Study on the Electrocatalytic Oxygen Reduction Mechanism of Bronze Corrosion Accelerated by Corrosion Products
FANG Yuan1,*, LI Yu1, JING Jiazhe1, FAN Shimin1, HAN Runrun1, WU Wenling1, LUO Hongjie1,2,ZHU Jianfeng1,*
1 School of Materials Science and Engineering, Shaanxi University of Science and Technology, School of Cultural Relics Protection Science and Technology, Key Laboratory of Materials and Technology for Unearthed Cultural Heritage Conservation, Ministry of Education, Xi’an 710021, China
2 School of Materials Science and Engineering, Shanghai 200000, China
下载:  全 文 ( PDF ) ( 25464KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作通过电镀法获得与古青铜器文物结构与成分相似的Cu-Sn-Pb青铜样品,利用化学腐蚀液对青铜样品进行人工强制腐蚀,并对比了腐蚀前后青铜样品在不同气氛(N2、O2、空气)下的腐蚀速率。为了研究青铜器文物腐蚀形成的主要产物(CuCl、Cu2(OH)2CO3、Cu2(OH)3Cl、Cu(OH)2、CuO)对青铜器腐蚀过程的影响,本工作以电化学测试平台为研究基础,采用青铜样品电极、玻碳电极、多孔电极三种电极结构测试五种腐蚀产物的氧还原电催化活性,分别进行了动电位极化、电化学阻抗、极化以及循环伏安曲线测试,结果表明五种腐蚀产物中CuCl对氧气还原反应催化活性最高,基于此提出了青铜器腐蚀过程中的多孔氧电极催化模型。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
方园
李钰
景嘉哲
范仕敏
韩润润
武文玲
罗宏杰
朱建锋
关键词:  青铜器文物  腐蚀产物  氧还原反应  多孔氧电极    
Abstract: In this work, the Cu-Sn-Pb bronze samples with similar structure and composition to ancient bronzes were obtained by electroplating method. The samples were aged by artificial corrosion using chemical corrosion solution. And then we compared the corrosion rates of bronze samples before and after artificial corrosion under different atmospheres (N2, O2, air). In order to evaluate the influence of five main corrosion pro-ducts (CuCl, Cu2(OH)2CO3, Cu2(OH)3Cl, Cu(OH)2, and CuO) on the corrosion process of bronze artifacts, the electrochemical testing platform was used. Three types of electrode structures, such as the bronze sample electrode, glass carbon electrode and porous electrode, were employed to test the electrocatalytic oxygen reduction activity of the above five corrosion products. The potentiodynamic polarization, electrochemical impedance spectroscopy, polarization and cyclic voltammetry tests were performed. The results revealed that CuCl exhibited the highest catalytic activity for the oxygen reduction reaction among the corrosion products. Based on these findings, we proposed the porous oxygen electrode catalytic model during the corrosion process of bronze artifacts.
Key words:  bronze    corrosion product    oxygen reduction reaction    porous oxygen electrode
出版日期:  2025-12-25      发布日期:  2025-12-17
ZTFLH:  K876.4  
基金资助: 国家重点研发计划(2019YFC1520100);国家自然科学基金(52272020;62404128);陕西省技术创新引导专项项目(2024QY-SZX-04);陕西省硅酸盐质文化遗产保护利用创新团队 (2020TD-008)
通讯作者:  *方园,陕西科技大学材料科学与工程学院副教授,硕士研究生导师。目前主要研究金属质文物的电化学腐蚀与防护、有机/无机纳米杂化保护涂层、纳米催化剂等。fangy@sust.edu.cn;朱建锋,陕西科技大学材料科学与工程学院教授,博士研究生导师。目前主要从事材料绿色制备、文化遗产保护等方面的研究工作。zhujf@sust.edu.cn   
引用本文:    
方园, 李钰, 景嘉哲, 范仕敏, 韩润润, 武文玲, 罗宏杰, 朱建锋. 腐蚀产物加速青铜腐蚀的电催化氧还原机理研究[J]. 材料导报, 2025, 39(24): 24120139-6.
FANG Yuan, LI Yu, JING Jiazhe, FAN Shimin, HAN Runrun, WU Wenling, LUO Hongjie,ZHU Jianfeng. Study on the Electrocatalytic Oxygen Reduction Mechanism of Bronze Corrosion Accelerated by Corrosion Products. Materials Reports, 2025, 39(24): 24120139-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24120139  或          https://www.mater-rep.com/CN/Y2025/V39/I24/24120139
1 Luo N. Research on Heritages and Preservation, 2017, 2(5), 181 (in Chinese).
罗宁. 遗产与保护研究, 2017, 2(5), 181.
2 He T Y, Wang H N, Liang H Z, et al. Materials Protection, 2024, 57(6), 96(in Chinese).
和天逸, 王海宁, 梁皓哲, 等. 材料保护, 2024, 57(6), 96.
3 Zhao L, Li Q, Zhao T L. Journal of Chinese Society for Corrosion and Protection, 2023, 43(6), 1165 (in Chinese).
赵璐, 李谦, 赵天亮. 中国腐蚀与防护学报, 2023, 43(6), 1165.
4 Monticelli C, Balbo A. Corrosion Science, 2018, 148(12), 144.
5 Chen H, Tian J, Li X F, et al. Yunnan Chemical Technology, 2012, 39(6), 37 (in Chinese).
陈颢, 田建, 李晓帆, 等. 云南化工, 2012, 39(6), 37.
6 Wang J L, Xu C C, Yu N. Corrosion Science and Protection Technology, 2005(5), 324 (in Chinese).
王菊琳, 许淳淳, 于淼. 腐蚀科学与防护技术, 2005(5), 324.
7 Yan Y, Zou C, Zhang L H, et al. Research on Chemical Intermediates, 2020, 46, 5087.
8 Kosec T, ćurković H O, Legat A. Electrochimica Acta, 2010, 56, 722.
9 Piccardo P, Mrdlinger M, Ghiara G. Applied Physics A, 2013, 113(4), 1039.
10 Feng S B, Hu F H, Feng L T. Corrosion and Protection, 2009, 30(1), 7 (in Chinese).
冯绍彬, 胡芳红, 冯丽婷. 腐蚀与防护, 2009, 30(1), 7.
11 Cicileo G P, Crespo M A, Rosales B M. Corrosion Science, 2004, 46(04), 929.
12 Kareem K, Sultan S, He L. Materials Chemistry and Physics, 2016, 169, 158.
13 Piccardo P, Mrdlinger M, Ghiara G. Applied Physics A, 2013, 113(4), 1039.
14 Picciochi R, Ramos A C, Mendonca M H, et al. Journal of Applied Electrochemistry, 2004, 34(34), 989.
15 Zhou H, Zhu H F, Cai L K. Sciences of Conservation and Archaeology, 2005, 17(3), 22 (in Chinese).
周浩, 祝鸿范, 蔡兰坤. 文物保护与考古科学, 2005, 17(3), 22.
16 Chen S Y, Zhang R, Wang N, et al. Sciences of Conservation and Archaeology, 2014, 26(3), 47 (in Chinese).
陈淑英, 张然, 王辇, 等. 文物考古与保护科学, 2014, 26(3), 47.
17 Lin Y, Yan Y, Wu X W, et al. Surface Technology, 2017, 46(2), 46 (in Chinese).
林颖, 闫莹, 吴雪威, 等. 表面技术, 2017, 46(2), 46.
18 Ghiara G, Piccardo P, The Journal of The Minerals, Metals and Materials Society, 2014, 66(5), 793.
19 Feng L T, Su C, Feng S B, et al. Journal of Materials Protection, 2010, 43(11), 14 (in Chinese).
冯丽婷, 苏畅, 冯绍彬, 等. 材料保护, 2010, 43(11), 14.
20 Liang Z P. Materials and Corrosion, 2019, 71(4), 617.
21 Curkovic H O. Electrochimica Acta, 2012, 83, 29.
22 Zou G, Cui J, Liu X, et al. Archaeological and Anthropological Sciences, 2019, 11(1), 15.
23 He K T. Studies in the History of Natural Sciences, 1997, 16(3), 273.
何堂坤. 自然科学史研究, 1997, 16(3), 273.
24 Yun Y, Scott D A. Archaeological and Anthropological Sciences, 2020, 12(6), 1.
25 Liang Z, Jiang K, Zhang T. Corrosion Science, 2021, 191, 109721.
26 Chen D, Yang Y, Wang T, et al. Journal of Archaeological Science, Reports, 2021, 40, 103218.
27 Chen D, Yang Y, Wang T, et al. Heritage Science, 2022, 10(1), 1.
28 Trentelman K, Stodulski L, Scott D, et al. Studies in conservation, 2002, 47(4), 217.
29 Fan X, Wang Q, Wang Y. Archaeological and Anthropological Sciences, 2020, 12(4), 1.
30 Luo W, Song G, Hu Y, et al. Journal of Cultural Heritage, 2020, 46, 304.
31 Peng X, Wang J, Wang J L, et al. Journal of Chinese Society for Corrosion and Protection, 2013, 33(6), 449 (in Chinese).
彭欣, 王佳, 王金龙, 等. 中国腐蚀与防护学报, 2013, 33(6), 449.
32 Zou Y, Wang J, Zheng Y Y. Journal of Chinese Society for Corrosion and Protection, 2011, 31(2), 91 (in Chinese).
邹妍, 王佳, 郑莹莹. 中国腐蚀与防护学报, 2011, 31(2), 91.
[1] 冯振, 饶韫诚, 王伟慧, 郑先锋. 燃料电池用双原子铬金属有机框架基阴极材料的计算设计[J]. 材料导报, 2025, 39(22): 24110177-5.
[2] 董梦娇, 徐洋洋, 李净珊, 叶仪鹏, 李秉芯, 陈昊天. 氮掺杂碳纳米纤维负载Co-N-C纳米片用于电催化氧还原反应[J]. 材料导报, 2025, 39(11): 24040222-7.
[3] 王金涛, 段体岗, 郭建章, 马力, 余聚鑫, 张海兵. 三维碳纤维基复合材料及其在海水溶解氧电池中的应用性能[J]. 材料导报, 2024, 38(4): 22040345-6.
[4] 陈亚楠, 刘培涛, 祖延清, 韩逢博, 李晓东, 毕鹏飞, 冯爱玲. 基于N,P共掺杂碳纳米片的富S空位Co/Co9S8复合物作为双功能催化剂用于可充锌-空气电池[J]. 材料导报, 2024, 38(12): 23010013-5.
[5] 郭贺, 焦进超, 张津, 王旭东, 连勇, 冯波, 冯晓伟, 郑开宏, 丁啸云, 韩东. 不同铝合金对Al/Mg/Al层状复合材料腐蚀行为的影响[J]. 材料导报, 2024, 38(12): 22090163-8.
[6] 盛雄, 李邦兴, 陆顺, 陆文强, 李晓锋, 康帅. 二维材料用于电化学法制备过氧化氢的研究进展[J]. 材料导报, 2024, 38(11): 22120169-13.
[7] 生健平, 喻明富, 李洁, 孙红. 基于V2C催化剂的混合电解质锂空气电池催化机理研究[J]. 材料导报, 2024, 38(10): 23030161-7.
[8] 宋冬梅, 郑秋燕, 潘廷仙, 胡长刚, 同鑫, 田娟. ZIFs材料对Fe/N/C催化剂氧还原性能的影响[J]. 材料导报, 2024, 38(10): 22100278-7.
[9] 赵帅凯, 李亚如, 任永鹏, 王长记, 潘昆明, 王利萌, 吕贝贝, 夏梁彬, 陈雪敏. ZIF衍生材料在ORR、OER和HER领域的应用研究进展[J]. 材料导报, 2023, 37(S1): 23010012-12.
[10] 赵冠琳, 刘树帅, 吴东亭, 王新洪, 邹勇. 元素W与Mo对非晶Ni-P镀层热稳定性和耐腐蚀性能的影响[J]. 材料导报, 2023, 37(7): 21070071-7.
[11] 徐文杰, 刘丹, 屈德宇, 李曦. 两电子氧还原电催化合成过氧化氢的研究进展[J]. 材料导报, 2023, 37(24): 22030010-12.
[12] 赵悦, 李德念, 阳济章, 熊传溪, 袁浩然, 陈勇. 中药渣生物炭活化制备碳基电催化剂及其氧还原反应催化性能研究[J]. 材料导报, 2023, 37(2): 21070205-7.
[13] 叶嘉鸿, 李德念, 阳济章, 赵悦, 袁浩然, 陈勇. 氮掺杂再生活性炭的制备及电催化氧还原反应性能研究[J]. 材料导报, 2023, 37(10): 22080168-7.
[14] 逄芳钊, 姚陈思琦, 李安金, 赵盘巢, 李继刚, 易伟, 何建云, 蒋云波, 陈义武. 用于氧还原反应的PtNi合金催化剂研究进展[J]. 材料导报, 2023, 37(1): 20070194-9.
[15] 刘佳琪, 杨庆浩. 氧还原电催化剂的研究进展[J]. 材料导报, 2022, 36(24): 20110226-6.
[1] Guang MA,Xin CHEN,Licheng LU,Dongqun XIN,Li MENG,Hao WANG,Ling CHENG,Fuyao YANG. Monte Carlo Simulation of the Evolution of Goss Texture in Secondary Recrystallization of Thin Gauge Grain Oriented Silicon Steel[J]. Materials Reports, 2018, 32(2): 313 -315 .
[2] WANG Tiantian, XU Mengjia, XU Jijin, YU Chun, LU Hao. Influence of Second Welding Thermal Cycle on Reheat Cracking Sensitivity of CGHAZ in T23 Steel[J]. Materials Reports, 2017, 31(12): 56 -59 .
[3] XIE Jiale, YANG Pingping, LI Chang Ming. Stable and High-efficient α-Fe2O3 Based Photoelectrochemical Water Splitting: Rational Materials Design and Charge Carrier Dynamics[J]. Materials Reports, 2018, 32(7): 1037 -1056 .
[4] YANG Shicong, YAO Guowen, ZHANG Jinquan, SHI Kang. The Corrosion Fatigue Characteristic of Steel Strand Experiencing an Artificial Accelerated Salt Fog Ageing[J]. Materials Reports, 2018, 32(12): 1988 -1993 .
[5] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[6] LI Xiuli, TIE Shengnian. Effect of Quick-dissolving and High-viscosity Carboxymethyl Cellulose Sodium on Properties of Glauber’s Salt-based Composites Phase Change Energy Storage Materials with Different Phase Transition Temperature Gradient[J]. Materials Reports, 2018, 32(22): 3848 -3852 .
[7] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[8] REN Xiuxiu, ZHU Yiju, ZHAO Shengxiang, HAN Zhongxi, YAO Lina. The Relationship Between Micromechanical Property and Friction Property of Four Kinds of Energetic Crystals[J]. Materials Reports, 2019, 33(z1): 448 -452 .
[9] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
[10] BIAN Guixue, CHEN Yueliang, ZHANG Yong, WANG Andong, WANG Zhefu. Equivalent Conversion Coefficient of Aluminum/Titanium Alloy Between Acidic NaCl Solution with Different Concentration and Water Based on Galvanic Corrosion Simulation[J]. Materials Reports, 2019, 33(16): 2746 -2752 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed