Please wait a minute...
材料导报  2025, Vol. 39 Issue (22): 24110177-5    https://doi.org/10.11896/cldb.24110177
  金属与金属基复合材料 |
燃料电池用双原子铬金属有机框架基阴极材料的计算设计
冯振1,2,*, 饶韫诚1, 王伟慧3, 郑先锋2,*
1 河南工学院材料科学与工程学院,河南 新乡 453003
2 河南工学院河南省线缆先进材料与智能制造重点实验室,河南 新乡 453003
3 河南工学院理学部,河南 新乡 453003
Computational Design of Dual-atom Chromium Metal-Organic Frameworks Based Cathode Materials for Fuel Cells
FENG Zhen1,2,*, RAO Yuncheng1, WANG Weihui3, ZHENG Xianfeng2,*
1 School of Materials Sciences and Engineering, Henan Institute of Technology, Xinxiang 453003, Henan, China
2 Henan Key Laboratory of Advanced Cable Materials and Intellgent Manufactring, Henan Institute of Technology, Xinxiang 453003, Henan, China
3 School ofScience, Henan Institute of Technology, Xinxiang, 453003, Henan, China
下载:  全 文 ( PDF ) ( 7625KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 氢燃料电池汽车可推动交通端的节能减排与能源的转型升级,而阴极材料的优化设计是影响燃料电池效率的关键。本工作聚焦于双原子铬金属有机框架材料,从原子结构优化、晶格参数确定、稳定性分析以及自由能计算四个层面深入剖析其性能。研究得出优化后材料的晶格常数为8.30 Å,且该材料在350~650 K温度区间展现出优异的结构稳定性。对氧还原吸附中间体原子结构进行分析,发现其存在三条反应路径,优化的最佳反应路径过电位为0.99 V,可取代现有的商业阴极材料。研究结果可为双原子铬金属有机框架材料在燃料电池领域的应用提供有力的理论支撑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
冯振
饶韫诚
王伟慧
郑先锋
关键词:  燃料电池  双原子铬金属有机框架  阴极材料  氧还原反应  电极活性    
Abstract: Hydrogen energy fuel cell vehicles can promote energyconservation and emission reduction in the transportation sector, as well as the transformation and upgrading of energy. The optimal design of cathode materials plays a pivotal role in affecting the efficiency of fuel cells. This work takes dual-atom chromium metal-organic frameworks as the research object and analyzes the performance of dual-atom chromium metal-organic frameworks from the atomic structure optimization, determination of lattice parameters, stability analysis, and free energy calculation, respectively. The optimized lattice constant is 8.30 Å, and it exhibits excellent structural stability within the temperature range of 350 K to 650 K. Through the analysis of the atomic structure of the oxygen reduction adsorption intermediates, it is found that there are three reaction paths. The overpotential of the optimized best reaction path is 0.99 V, which could replace the existing commercial cathode materials. These findings provide theoretical support for the application of dual-atom chromium metal-organic framework materials in fuel cells.
Key words:  hydrogen fuel cell    dual-atom chromium metal-organic framework    cathode material    oxygen reduction reaction    electrode reactivity
出版日期:  2025-11-25      发布日期:  2025-11-14
ZTFLH:  O646.5  
基金资助: 国家自然科学基金(62074053);河南省高等学校重点科研项目(25B480008);河南省自然科学基金(242300420015);河南省科技攻关项目(242102321162;252102230122);河南省线缆先进材料与智能制造重点实验室开放课题(CAMIM2025008);河南工学院校级教育教学改革研究与实践项目(2024JG-YB024)
通讯作者:  *冯振,博士,河南工学院材料科学与工程学院副教授。目前主要从事新型能量转换材料的设计与利用的研究工作。fengzhen27@126.com;郑先锋,河南省线缆先进材料与智能制造重点实验室教授。目前主要从事电缆材料及电缆结构设计方面的研究工作。zxf@hait.edu.cn   
引用本文:    
冯振, 饶韫诚, 王伟慧, 郑先锋. 燃料电池用双原子铬金属有机框架基阴极材料的计算设计[J]. 材料导报, 2025, 39(22): 24110177-5.
FENG Zhen, RAO Yuncheng, WANG Weihui, ZHENG Xianfeng. Computational Design of Dual-atom Chromium Metal-Organic Frameworks Based Cathode Materials for Fuel Cells. Materials Reports, 2025, 39(22): 24110177-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24110177  或          https://www.mater-rep.com/CN/Y2025/V39/I22/24110177
1 Yuan W, Ma Y, Wu H, et al. Journal of Energy Chemistry, 2022, 65, 254.
2 Liu Y D, Guo H X, Ouyang X P, et al. Engineering Sciences in China, 2021, 23(4), 162 (in Chinese).
刘应都, 郭红霞, 欧阳晓平. 中国工程科学, 2021, 23(4), 162.
3 Ye C, Xu L. Journal of Materials Chemistry A, 2021, 9(39), 22218.
4 Shao Y L, Wang L Y, Zhang X Y, et al. Chemistry Bulletin, 2023, 86(12), 1426 (in Chinese).
邵然磊, 王鲁元, 张兴宇, 等. 化学通报, 2023, 86(12), 1426.
5 Liao P, Kang J, Zhong Y, et al. Science China Chemistry, 2023, 66(7), 1924.
6 Feng Z, Yang Z, Meng X, et al. Journal of Materials Chemistry A, 2022, 10, 4731.
7 Wang Z, Fu S, Zhang W, et al. Advanced Materials, 2024, 36(21), 2311454.
8 Huang Z, Geihufe R. Quantum Metal-Organic Frameworks. Small Science, 2024, 4(10), 2400161.
9 Lv Z W, Lu M M, Liu Q, et al. New Chemical Materials, 2024, 52(1), 36 (in Chinese).
吕周围, 路萌萌, 刘茜, 等. 化工新型材料, 2024, 52(1), 36.
10 Ma W H, Ma Y, Wu M O, et al. Fine Chemicals, 2025, 42(1), 12(in Chinese).
马文皓, 马悦, 吴明鸥, 等. 精细化工, 2025, 42(1), 12.
11 Torad N, Salunkhe R, Li Y, et al. Chemistry A European Journal, 2014, 20(26), 7895.
12 Shen L, Song H, Wang C. Electrochimica Acta, 2017, 235, 595.
13 Wei X, Jiang C, Xu H, et al. ACS Catalysis, 2023, 13(24), 15663.
14 Lou H, Schwingenschlögl S, Yang G. Applied Surface Science, 2023, 626, 157203.
15 Xu X, Guan J. Chemical Science, 2024, 15, 14585.
16 Shang S, Du C, Liu Y, et al. Nature Communications, 2022, 13, 7599.
17 Li X, Liu Q, Tang Y, et al. Journal of the American Chemical Society, 2023, 145(14), 7869.
18 Chen Y, Gong S N, Lu H, et al. Modern Chemical Research, 2021, (18), 130 (in Chinese).
陈瀛, 宫斯宁, 芦露华, 等. 当代化工研究, 2021, (18), 130.
19 Mathew K, Sundararaman R, Letchworth-Weaver K, et al. The Journal of Chemical Physics, 2014, 140, 084106.
20 Blochl P. Physical Review B, 1994, 50, 17953.
21 Martyna G, Klein M, Tuckerman. The Journal of Chemical Physics, 1992, 97, 2635.
22 Wang V, Xu N, Liu J, et al. Computer Physics Communications, 2019, 267, 108033.
23 Wu D, He B, Wang Y, et al. Journal of Physics D:Applied Physics, 2022, 55(20), 203001.
24 Nørskov J, Rossmeisl J, Logadottir, et al. The Journal of Physical Chemistry B, 2004, 108(46), 17886.
25 Yang M, Wang Y, Huang Y, et al. Angewandte Chemie, 2024, 64(10) e202421008.
26 Shang S, Du C, Liu Y, et al. Nature Communications, 2022, 13(1), 7599.
[1] 朱志刚, 宋琛, 董东东, 刘太楷, 文魁, 邓畅光, 宁洪龙, 刘敏. 固体氧化物燃料电池Fe-Cr金属支撑体研究进展[J]. 材料导报, 2025, 39(20): 24110095-10.
[2] 戴江炫, 姬文辉, 卢嘉铖, 谢瑞杰, 李林. 汗液发电:原理、器件结构及应用[J]. 材料导报, 2025, 39(2): 24030268-16.
[3] 谭婷, 李春生, 王冠旭, 刘彩玲, 王嘉蓉, 杨征. 弛豫时间分布技术在固体氧化物燃料电池中的应用[J]. 材料导报, 2025, 39(19): 24090247-8.
[4] 张倩倩, 赵阳, 李建秋, 雍辉, 郑越, 宋飞飞, 王彦皓, 康忠. Mg88Ce4Ca6In2储氢材料制备及水解放氢性能[J]. 材料导报, 2025, 39(17): 24060047-8.
[5] 董梦娇, 徐洋洋, 李净珊, 叶仪鹏, 李秉芯, 陈昊天. 氮掺杂碳纳米纤维负载Co-N-C纳米片用于电催化氧还原反应[J]. 材料导报, 2025, 39(11): 24040222-7.
[6] 刘守一, 望宇皓, 刘莉莉, 欧阳云祥, 李娜, 胡朝霞, 陈守文. 石墨相氮化碳在聚合物电解质膜中的研究进展[J]. 材料导报, 2024, 38(6): 23030250-7.
[7] 李兰心, 潘牧, 郭伟. 质子交换膜燃料电池在线监测方法研究进展[J]. 材料导报, 2024, 38(6): 22070018-14.
[8] 王金涛, 段体岗, 郭建章, 马力, 余聚鑫, 张海兵. 三维碳纤维基复合材料及其在海水溶解氧电池中的应用性能[J]. 材料导报, 2024, 38(4): 22040345-6.
[9] 谢雨秋, 郭伟. 料浆I/C比对PEMFC合金催化剂氧传质阻力的影响规律[J]. 材料导报, 2024, 38(14): 23010027-5.
[10] 陈亚楠, 刘培涛, 祖延清, 韩逢博, 李晓东, 毕鹏飞, 冯爱玲. 基于N,P共掺杂碳纳米片的富S空位Co/Co9S8复合物作为双功能催化剂用于可充锌-空气电池[J]. 材料导报, 2024, 38(12): 23010013-5.
[11] 黄少炎, 修慧娟, 王志雄, 樊莎, 王思敏, 邓自立, 李娜, 李金宝. 纳米纤维素基复合材料在锂硫电池中的应用研究进展[J]. 材料导报, 2024, 38(12): 22120181-6.
[12] 盛雄, 李邦兴, 陆顺, 陆文强, 李晓锋, 康帅. 二维材料用于电化学法制备过氧化氢的研究进展[J]. 材料导报, 2024, 38(11): 22120169-13.
[13] 生健平, 喻明富, 李洁, 孙红. 基于V2C催化剂的混合电解质锂空气电池催化机理研究[J]. 材料导报, 2024, 38(10): 23030161-7.
[14] 宋冬梅, 郑秋燕, 潘廷仙, 胡长刚, 同鑫, 田娟. ZIFs材料对Fe/N/C催化剂氧还原性能的影响[J]. 材料导报, 2024, 38(10): 22100278-7.
[15] 赵帅凯, 李亚如, 任永鹏, 王长记, 潘昆明, 王利萌, 吕贝贝, 夏梁彬, 陈雪敏. ZIF衍生材料在ORR、OER和HER领域的应用研究进展[J]. 材料导报, 2023, 37(S1): 23010012-12.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[8] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[9] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
[10] LEI Lin, YANG Qingbo, ZHANG Zhiqing, FAN Xiangze, LI Xu, YANG Mou, DENG Zanhui. Multi-pass Compression Behavior and Microstructure Evolution of AA2195 Aluminum Lithium Alloy[J]. Materials Reports, 2019, 33(z1): 348 -352 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed